Skip to main content

Tracers for Sympathetic Cardiac Neurotransmission Imaging

  • Chapter
  • First Online:
Autonomic Innervation of the Heart

Abstract

The sympathetic nervous system is the primary extrinsic control of heart rate and contractility and is activated during periods of stress to compensate for increased cardiovascular demand. Signal transduction by the neurotransmitter norepinephrine via postsynaptic β-adrenoceptors and second messenger pathways increases calcium supply in the myocardium, leading to enhanced contractile function. Clinical evidence demonstrates elevated sympathetic tone in cardiovascular disease, resulting in altered expression patterns of multiple proteins involved in sympathetic neuronal transmission. Molecular imaging techniques have been developed targeting these proteins by single-photon emission computed tomography (SPECT) or positron emission tomography (PET). A number of radiotracers have been developed, evaluated, and deployed targeting presynaptic neuronal function (uptake-1 norepinephrine reuptake pathway), postsynaptic α- and β-adrenoceptor density, and second messenger systems (adenylate cyclase/cyclic adenosine monophosphate (cAMP) and phospholipase C/inositol trisphosphate cascades). While the majority of clinical applications to date have utilized analogues of norepinephrine including 123I-metaiodobenzylguanidine ([123I]-MIBG) with SPECT and 11C-meta-hydroxyephedrine ([11C]-mHED) with PET, recent studies have demonstrated added value to multitracer approaches, providing insight not only into neuronal function but also into receptor binding and downstream signaling. In this chapter, the physiology of sympathetic neuronal signaling is discussed with attention to specific targets of current radiotracers in molecular imaging. A summary of the available tracers that have been evaluated in preclinical and clinical settings is provided, with particular attention to those tracers currently utilized in patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Adenylate cyclase

AR:

Adrenoceptor

ATP:

Adenosine triphosphate

BNP:

B-type natriuretic peptide

cAMP:

Cyclic adenosine monophosphate

COMT:

Catechol-O-methyltransferase

DA:

Dopamine

DDC:

DOPA-decarboxylase

DOPA:

Dihydrxoyphenylalanine

DβH:

Dopamine-β-hydroxylase

Epi:

Epinephrine

ICD:

Implantable cardioverter-defibrillator

IP3:

Inositol trisphosphate

IPKI:

Isoquinolinesulfonamide protein kinase inhibitor

MAO:

Monoamine oxidase

NE:

Norepinephrine

NYHA:

New York Heart Association

PDE:

Phosphodiesterases

PDE4:

Phosphodiesterase-4

PET:

Positron emission tomography

PKA:

Protein kinase A

PKC:

Protein kinase C

PLC:

Phospholipase C

PMNT:

Phenylethanolamine methyltransferase

SNARE:

Soluble N-ethylmaleimide-sensitive factor attachment protein receptor

SPECT:

Single-photon emission computed tomography

TH:

Tyrosine hydroxylase

t-SNARE:

Target-SNARE

Tyr:

Tyrosine

VMAT2:

Vesicular monoamine transporter 2

References

  • Ardell JL (2004) Intrathoracic neuronal regulation of cardiac function. In: Armour JA, Ardell JL (eds) Basic and clinical neurocardiology. Oxford University Press, New York

    Google Scholar 

  • Armour JA (2004) Cardiac neuronal hierarchy in health and disease. Am J Physiol Regul Integr Comp Physiol 287:R262–R271

    Article  CAS  PubMed  Google Scholar 

  • Backs J, Haunstetter A, Gerber SH, Metz J, Borst MM, Strasser RH, Kubler W, Haass M (2001) The neuronal norepinephrine transporter in experimental heart failure: evidence for a posttranscriptional downregulation. J Mol Cell Cardiol 33:461–472

    Article  CAS  PubMed  Google Scholar 

  • Bax JJ, Kraft O, Buxton AE, Fjeld JG, Parizek P, Agostini D, Knuuti J, Flotats A, Arrighi J, Muxi A, Alibelli MJ, Banerjee G, Jacobson AF (2008) 123 I-mIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 1:131–140

    Article  PubMed  Google Scholar 

  • Benediktsdottir VE, Curvers J, Gudbjarnason S (1999) Time course of alterations in phospholipid fatty acids and number of beta-adrenoceptors in the rat heart during adrenergic stimulation in vivo. J Mol Cell Cardiol 31:1105–1115

    Article  CAS  PubMed  Google Scholar 

  • Blanes-Mira C, Pastor MT, Valera E, Fernandez-Ballester G, Merino JM, Gutierrez LM, Perez-Paya E, Ferrer-Montiel A (2003) Identification of SNARE complex modulators that inhibit exocytosis from an alpha-helix-constrained combinatorial library. Biochem J 375:159–166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Boogers MJ, Borleffs CJ, Henneman MM, van Bommel RJ, van Ramshorst J, Boersma E, Dibbets-Schneider P, Stokkel MP, van der Wall EE, Schalij MJ, Bax JJ (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55:2769–2777

    Article  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307:205–211

    Article  CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S et al (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59:297–309

    Article  CAS  PubMed  Google Scholar 

  • Brodde OE (1991) Beta 1- and beta 2-adrenoceptors in the human heart: properties, function, and alterations in chronic heart failure. Pharmacol Rev 43:203–242

    CAS  PubMed  Google Scholar 

  • Bryan-Lluka LJ, Paczkowski FA, Bonisch H (2001) Effects of short- and long-term exposure to c-AMP and c-GMP on the noradrenaline transporter. Neuropharmacology 40:607–617

    Article  CAS  PubMed  Google Scholar 

  • Chida M, Kagaya Y, Imahori Y, Namiuchi S, Fujii R, Fukuchi M, Takahashi C, Tezuka F, Ido T, Shirato K (2000) Visualization of myocardial phosphoinositide turnover with 1-[1-(11)C]-butyryl-2-palmitoyl-rac-glycerol in rats with myocardial infarction. J Nucl Med 41:2063–2068

    CAS  PubMed  Google Scholar 

  • Dae MW, O’Connell JW, Botvinick EH, Chin MC (1995) Acute and chronic effects of transient myocardial ischemia on sympathetic nerve activity, density, and norepinephrine content. Cardiovasc Res 30:270–280

    Article  CAS  PubMed  Google Scholar 

  • de Jong RM, Willemsen AT, Slart RH, Blanksma PK, van Waarde A, Cornel JH, Vaalburg W, van Veldhuisen DJ, Elsinga PH (2005) Myocardial beta-adrenoceptor downregulation in idiopathic dilated cardiomyopathy measured in vivo with PET using the new radioligand (S)-[11C]CGP12388. Eur J Nucl Med Mol Imaging 32:443–447

    Article  PubMed  Google Scholar 

  • Degrado TR, Zalutsky MR, Vaidyanathan G (1995) Uptake mechanisms of meta-[123I]iodobenzylguanidine in isolated rat heart. Nucl Med Biol 22:1–12

    Article  CAS  PubMed  Google Scholar 

  • Delforge J, Syrota A, Lancon JP, Nakajima K, Loc’h C, Janier M, Vallois JM, Cayla J, Crouzel C (1991) Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 32:739–748

    CAS  PubMed  Google Scholar 

  • Denn MJ, Stone HL (1976) Autonomic innervation of dog coronary arteries. J Appl Physiol 41:30–35

    CAS  PubMed  Google Scholar 

  • Ding YS, Lin KS, Logan J, Benveniste H, Carter P (2005) Comparative evaluation of positron emission tomography radiotracers for imaging the norepinephrine transporter: (S, S) and (R, R) enantiomers of reboxetine analogs ([11C]methylreboxetine, 3-Cl-[11C]methylreboxetine and [18F]fluororeboxetine), (R)-[11C]nisoxetine, [11C]oxaprotiline and [11C]lortalamine. J Neurochem 94:337–351

    Article  CAS  PubMed  Google Scholar 

  • Elsinga PH, Doze P, van Waarde A, Pieterman RM, Blanksma PK, Willemsen AT, Vaalburg W (2001) Imaging of beta-adrenoceptors in the human thorax using (S)-[(11)C]CGP12388 and positron emission tomography. Eur J Pharmacol 433:173–176

    Article  CAS  PubMed  Google Scholar 

  • Esler M, Jackman G, Leonard P, Skews H, Bobik A, Korner P (1981) Effect of norepinephrine uptake blockers on norepinephrine kinetics. Clin Pharmacol Ther 29:12–20

    Article  CAS  PubMed  Google Scholar 

  • Esler MD, Jennings GL, Johns J, Burke F, Little PJ, Leonard P (1984) Estimation of ‘total’ renal, cardiac and splanchnic sympathetic nervous tone in essential hypertension from measurements of noradrenaline release. J Hypertens Suppl 2:S123–S125

    CAS  PubMed  Google Scholar 

  • Fallavollita JA, Heavey BM, Luisi AJ, Michalek SM, Baldwa S, Mashtare TL, Hutson AD, deKemp RA, Haka MS, Sajid M, Cimato TR, Curtis AB, Cain ME, Canty JA (2013) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63:141–149

    Article  PubMed Central  PubMed  Google Scholar 

  • Foley KF, Van Dort ME, Sievert MK, Ruoho AE, Cozzi NV (2002) Stereospecific inhibition of monoamine uptake transporters by meta-hydroxyephedrine isomers. J Neural Transm 109:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98:556–562

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Geerlings A, Lopez-Corcuera B, Aragon C (2000) Characterization of the interactions between the glycine transporters GLYT1 and GLYT2 and the SNARE protein syntaxin 1A. FEBS Lett 470(1):51–54.

    Google Scholar 

  • Gerson MC, Caldwell JH, Ananthasubramaniam K, Clements IP, Henzlova MJ, Amanullah A, Jacobson AF (2011) Influence of diabetes mellitus on prognostic utility of imaging of myocardial sympathetic innervation in heart failure patients. Circ Cardiovasc Imaging 4:87–93

    Article  PubMed  Google Scholar 

  • Greene M, Thackeray JT, Kenk M, Thorn SL, Bevilacqua L, Harper M-E, Beanlands RS, DaSilva JN (2009) Reduced In Vivo Phosphodiesterase-4 Response to Norepinephrine Challenge in Diet-Induced Obese Rats. Can J Physiol Pharmacol 87:196–202

    Article  CAS  PubMed  Google Scholar 

  • Habecker BA, Willison BD, Shi X, Woodward WR (2006) Chronic depolarization stimulates norepinephrine transporter expression via catecholamines. J Neurochem 97:1044–1051

    Article  CAS  PubMed  Google Scholar 

  • Haka MS, Kilbourn MR (1989) Synthesis and regional mouse brain distribution of [11C]nisoxetine, a norepinephrine uptake inhibitor. Int J Rad Appl Instrum B 16:771–774

    Article  CAS  PubMed  Google Scholar 

  • Imahori Y, Fujii R, Ueda S, Matsumoto K, Wakita K, Ido T, Nariai T, Nakahashi H (1992) Membrane trapping of carbon-11-labeled 1,2-diacylglycerols as a basic concept for assessing phosphatidylinositol turnover in neurotransmission process. J Nucl Med 33:413–422

    CAS  PubMed  Google Scholar 

  • Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, Agostini D, Weiland F, Chandna H, Narula J (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212–2221

    Article  PubMed  Google Scholar 

  • Jakobsen S, Kodahl GM, Olsen AK, Cumming P (2006) Synthesis, radiolabeling and in vivo evaluation of [11C]RAL-01, a potential phosphodiesterase 5 radioligand. Nucl Med Biol 33:593–597

    Article  CAS  PubMed  Google Scholar 

  • Jaques S Jr, Tobes MC, Sisson JC (1987) Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res 47:3920–3928

    PubMed  Google Scholar 

  • Johnson TA, Gray AL, Lauenstein JM, Newton SS, Massari VJ (2004) Parasympathetic control of the heart. I An interventriculo-septal ganglion is the major source of the vagal intracardiac innervation of the ventricles. J Appl Physiol 96:2265–2272

    Article  PubMed  Google Scholar 

  • Jung CH, Yang YS, Kim JS, Shin JI, Jin YS, Shin JY, Lee JH, Chung KM, Hwang JS, Oh JM, Shin YK, Kweon DH (2008) A search for synthetic peptides that inhibit soluble N-ethylmaleimide sensitive-factor attachment receptor-mediated membrane fusion. FEBS J 275:3051–3063

    Article  CAS  PubMed  Google Scholar 

  • Kagaya Y, Chida M, Imahori Y, Fujii R, Namiuchi S, Takeda M, Yamane Y, Otani H, Watanabe J, Fukuchi M, Tezuka F, Ido T, Shirato K (2002) Effect of angiotensin converting enzyme inhibition on myocardial phosphoinositide metabolism visualised with 1-[1-11C]-butyryl-2-palmitoyl-rac-glycerol in myocardial infarction in the rat. Eur J Nucl Med Mol Imaging 29:1516–1522

    Article  CAS  PubMed  Google Scholar 

  • Kasama S, Toyama T, Sumino H, Kumakura H, Takayama Y, Minami K, Ichikawa S, Matsumoto N, Sato Y, Kurabayashi M (2011) Prognostic value of cardiac sympathetic nerve activity evaluated by [123I]m-iodobenzylguanidine imaging in patients with ST-segment elevation myocardial infarction. Heart 97:20–26

    Article  PubMed  Google Scholar 

  • Keller NR, Diedrich A, Appalsamy M, Tuntrakool S, Lonce S, Finney C, Caron MG, Robertson D (2004) Norepinephrine transporter-deficient mice exhibit excessive tachycardia and elevated blood pressure with wakefulness and activity. Circulation 110:1191–1196

    Article  CAS  PubMed  Google Scholar 

  • Kenk M, Greene M, Thackeray J, Dekemp RA, Lortie M, Thorn S, Beanlands RS, Dasilva JN (2007) In vivo selective binding of (R)-[(11)C]rolipram to phosphodiesterase-4 provides the basis for studying intracellular cAMP signaling in the myocardium and other peripheral tissues. Nucl Med Biol 34:71–77

    Article  CAS  PubMed  Google Scholar 

  • Kenk M, Greene M, Lortie M, Dekemp RA, Beanlands RS, Dasilva JN (2008) Use of a column-switching high-performance liquid chromatography method to assess the presence of specific binding of (R)- and (S)-[(11)C]rolipram and their labeled metabolites to the phosphodiesterase-4 enzyme in rat plasma and tissues. Nucl Med Biol 35:515–521

    Article  CAS  PubMed  Google Scholar 

  • Kenk M, Thackeray JT, Thorn SL, Dhami K, Chow BJ, Ascah KJ, Dasilva JN, Beanlands RS (2010) Alterations of pre- and postsynaptic noradrenergic signaling in a rat model of adriamycin-induced cardiotoxicity. J Nucl Cardiol 17:175–176

    Article  Google Scholar 

  • Kiesewetter DO, Sassaman MB, Robbins J, Elaine MJ, Carson RE, Appel NM, Sutkowski E, Herscovitch P, Braun A, Eckelman WC (2000) Synthesis and evaluation of an 18F analog of forskolin for imaging adenylyl cyclase. J Fluorine Chem 101:297–304

    Article  CAS  Google Scholar 

  • Kopin IJ, Gordon EK (1963) Origin of norepinephrine in the heart. Nature 199:1289

    Article  CAS  PubMed  Google Scholar 

  • Law MP, Osman S, Davenport RJ, Cunningham VJ, Pike VW, Camici PG (1997) Biodistribution and metabolism of [N-methyl-11C]m-hydroxyephedrine in the rat. Nucl Med Biol 24:417–424

    CAS  PubMed  Google Scholar 

  • Law MP, Osman S, Pike VW, Davenport RJ, Cunningham VJ, Rimoldi O, Rhodes CG, Giardina D, Camici PG (2000) Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 27:7–17

    Article  CAS  PubMed  Google Scholar 

  • Law MP, Schafers K, Kopka K, Wagner S, Schober O, Schafers M (2010) Molecular imaging of cardiac sympathetic innervation by 11C-mHED and PET: from man to mouse? J Nucl Med 51:1269–1276

    Article  CAS  PubMed  Google Scholar 

  • Lazewatsky J, Sinusas A, Brunetti J, Heller G, Sparks R, Puretskiy A, Lee LV (2010) Radiation dosimetry of LMI1195, first-in-human study of a novel F-18 labeled tracer for imaging myocardial innervation (Abstract). J Nucl Med 51:1432

    Google Scholar 

  • Li W, Knowlton D, Van Winkle DM, Habecker BA (2004) Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 286:H2229–H2236

    Article  CAS  PubMed  Google Scholar 

  • Liang CS, Fan TH, Sullebarger JT, Sakamoto S (1989) Decreased adrenergic neuronal uptake activity in experimental right heart failure. A chamber-specific contributor to beta-adrenoceptor downregulation. J Clin Invest 84:1267–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Link JM, Synovec RE, Krohn KA, Caldwell JH (1997) High speed liquid chromatography of phenylethanolamines for the kinetic analysis of [11C]-meta-hydroxyephedrine and metabolites in plasma. J Chromatogr B Biomed Sci Appl 693:31–41

    Article  CAS  PubMed  Google Scholar 

  • Lortie M, DaSilva JN, Kenk M, Thorn S, Davis D, Birnie D, Beanlands RS, deKemp RA (2012) Analysis of (R)- and (S)-[(11)C]rolipram kinetics in canine myocardium for the evaluation of phosphodiesterase-4 with PET. Mol Imaging Biol 14:225–236

    Article  PubMed  Google Scholar 

  • Lourenco CM, Kenk M, Beanlands RS, DaSilva JN (2006) Increasing synaptic noradrenaline, serotonin and histamine enhances in vivo binding of phosphodiesterase-4 inhibitor (R)-[11C]rolipram in rat brain, lung and heart. Life Sci 79:356–364

    Article  CAS  PubMed  Google Scholar 

  • Mao W, Iwai C, Qin F, Liang CS (2005) Norepinephrine induces endoplasmic reticulum stress and downregulation of norepinephrine transporter density in PC12 cells via oxidative stress. Am J Physiol Heart Circ Physiol 288:H2381–H2389

    Article  CAS  PubMed  Google Scholar 

  • Mardon K, Montagne O, Elbaz N, Malek Z, Syrota A, Dubois-Rande JL, Meignan M, Merlet P (2003) Uptake-1 carrier downregulates in parallel with the beta-adrenergic receptor desensitization in rat hearts chronically exposed to high levels of circulating norepinephrine: implications for cardiac neuroimaging in human cardiomyopathies. J Nucl Med 44:1459–1466

    CAS  PubMed  Google Scholar 

  • Matsunari I, Aoki H, Nomura Y, Takeda N, Chen WP, Taki J, Nakajima K, Nekolla SG, Kinuya S, Kajinami K (2010) Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 3:595–603

    Article  PubMed  Google Scholar 

  • Miner LH, Schroeter S, Blakely RD, Sesack SR (2003) Ultrastructural localization of the norepinephrine transporter in superficial and deep layers of the rat prelimbic prefrontal cortex and its spatial relationship to probable dopamine terminals. J Comp Neurol 466:478–494

    Article  PubMed  Google Scholar 

  • Momose M, Reder S, Raffel DM, Watzlowik P, Wester HJ, Nguyen N, Elsinga PH, Bengel FM, Remien J, Schwaiger M (2004) Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 45:471–477

    CAS  PubMed  Google Scholar 

  • Munch G, Nguyen NT, Nekolla S, Ziegler S, Muzik O, Chakraborty P, Wieland DM, Schwaiger M (2000) Evaluation of sympathetic nerve terminals with [(11)C]epinephrine and [(11)C]hydroxyephedrine and positron emission tomography. Circulation 101:516–523

    Article  CAS  PubMed  Google Scholar 

  • Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH (1983) Inverse relationship between cardiac accumulation of meta-[131I]iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med 24:1127–1134

    CAS  PubMed  Google Scholar 

  • Narula J, Sarkar K (2003) A conceptual paradox of MIBG uptake in heart failure: retention with incontinence! J Nucl Cardiol 10:700–704

    Article  PubMed  Google Scholar 

  • Naya M, Tsukamoto T, Morita K, Katoh C, Nishijima K, Komatsu H, Yamada S, Kuge Y, Tamaki N, Tsutsui H (2009) Myocardial beta-adrenergic receptor density assessed by 11C-CGP12177 PET predicts improvement of cardiac function after carvedilol treatment in patients with idiopathic dilated cardiomyopathy. J Nucl Med 50:220–225

    Article  CAS  PubMed  Google Scholar 

  • Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M (1997) Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 38:780–785

    CAS  PubMed  Google Scholar 

  • Nishijima K, Kuge Y, Seki K, Ohkura K, Motoki N, Nagatsu K, Tanaka A, Tsukamoto E, Tamaki N (2002) A simplified and improved synthesis of [11C]phosgene with iron and iron (III) oxide. Nucl Med Biol 29:345–350

    Article  CAS  PubMed  Google Scholar 

  • Nishijima K, Kuge Y, Seki K, Ohkura K, Morita K, Nakada K, Tamaki N (2004) Preparation and pharmaceutical evaluation for clinical application of high specific activity S-(-)[11C]CGP-12177, a radioligand for beta-adrenoreceptors. Nucl Med Commun 25:845–849

    Article  CAS  PubMed  Google Scholar 

  • Otani H, Kagaya Y, Imahori Y, Yasuda S, Fujii R, Chida M, Namiuchi S, Takeda M, Sakuma M, Watanabe J, Ido T, Nonogi H, Shirato K (2005) Myocardial 11C-diacylglycerol accumulation and left ventricular remodeling in patients after myocardial infarction. J Nucl Med 46:553–559

    PubMed  Google Scholar 

  • Pardini BJ, Lund DD, Schmid PG (1989) Organization of the sympathetic postganglionic innervation of the rat heart. J Auton Nerv Syst 28:193–201

    Article  CAS  PubMed  Google Scholar 

  • Park-Holohan SJ, Asselin MC, Turton DR, Williams SL, Hume SP, Camici PG, Rimoldi OE (2008) Quantification of [11C]GB67 binding to cardiac alpha1-adrenoceptors with positron emission tomography: validation in pigs. Eur J Nucl Med Mol Imaging 35:1624–1635

    Article  PubMed  Google Scholar 

  • Parrish DC, Gritman K, Van Winkle DM, Woodward WR, Bader M, Habecker BA (2008) Postinfarct sympathetic hyperactivity differentially stimulates expression of tyrosine hydroxylase and norepinephrine transporter. Am J Physiol Heart Circ Physiol 294:H99–H106

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM, Chen W (2004) Binding of [3H]mazindol to cardiac norepinephrine transporters: kinetic and equilibrium studies. Naunyn Schmiedebergs Arch Pharmacol 370:9–16

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM, Wieland DM (2001) Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 28:541–559

    Article  CAS  PubMed  Google Scholar 

  • Raffel DM, Corbett JR, del Rosario RB, Gildersleeve DL, Chiao PC, Schwaiger M, Wieland DM (1996) Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 37:1923–1931

    CAS  PubMed  Google Scholar 

  • Raffel DM, Chen W, Sherman PS, Gildersleeve DL, Jung YW (2006) Dependence of cardiac 11C-meta-hydroxyephedrine retention on norepinephrine transporter density. J Nucl Med 47:1490–1496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Raffel DM, Jung YW, Gildersleeve DL, Sherman PS, Moskwa JJ, Tluczek LJ, Chen W (2007) Radiolabeled phenethylguanidines: novel imaging agents for cardiac sympathetic neurons and adrenergic tumors. J Med Chem 50:2078–2088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ren ZG, Porzgen P, Zhang JM, Chen XR, Amara SG, Blakely RD, Sieber-Blum M (2001) Autocrine regulation of norepinephrine transporter expression. Mol Cell Neurosci 17:539–550

    Article  CAS  PubMed  Google Scholar 

  • Rosenspire KC, Haka MS, Van Dort ME, Jewett DM, Gildersleeve DL, Schwaiger M, Wieland DM (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334

    CAS  PubMed  Google Scholar 

  • Russ H, Gliese M, Sonna J, Schomig E (1992) The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+). Naunyn Schmiedebergs Arch Pharmacol 346:158–165

    Article  CAS  PubMed  Google Scholar 

  • Salt PJ (1972) Inhibition of noradrenaline uptake 2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol 20:329–340

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Enta A, Nozaki T, Ishii S, Senda M (1993) Carbon-11-forskolin: a ligand for visualization of the adenylate cyclase-related second messenger system. J Nucl Med 34:1944–1948

    CAS  PubMed  Google Scholar 

  • Sasano T, Abraham MR, Chang KC, Ashikaga H, Mills KJ, Holt DP, Hilton J, Nekolla SG, Dong J, Lardo AC, Halperin H, Dannals RF, Marban E, Bengel FM (2008) Abnormal sympathetic innervation of viable myocardium and the substrate of ventricular tachycardia after myocardial infarction. J Am Coll Cardiol 51:2266–2275

    Article  PubMed  Google Scholar 

  • Thackeray JT, Beanlands RS, Dasilva JN (2007) Presence of specific 11C-meta-hydroxyephedrine retention in heart, lung, pancreas, and brown adipose tissue. J Nucl Med 48:1733–1740

    Article  CAS  PubMed  Google Scholar 

  • Thackeray JT, Parsa-Nezhad M, Kenk M, Thorn SL, Kolajova M, Beanlands RS, Dasilva JN (2011) Reduced CGP12177 binding to cardiac beta-adrenoceptors in hyperglycemic high-fat-diet-fed, streptozotocin-induced diabetic rats. Nucl Med Biol 38:1059–1066

    Article  CAS  PubMed  Google Scholar 

  • Thackeray JT, Beanlands RS, DaSilva JN (2012) Altered sympathetic nervous system signaling in the diabetic heart: emerging targets for molecular imaging. Am J Nucl Med Mol Imaging 2:319–339

    Google Scholar 

  • Thackeray JT, Renaud JM, Kordos M, Klein R, deKemp RA, Beanlands RS, DaSilva JN (2013) Test-retest repeatability of quantitative cardiac 11C-meta-hydroxyephedrine measurements in rats by small animal positron emission tomography. Nucl Med Biol 40:676–681

    Article  CAS  PubMed  Google Scholar 

  • Thomas AJ, DaSilva JN, Lortie M, Renaud JM, Kenk M, Beanlands RS, deKemp RA (2011) PET of (R)-11C-rolipram binding to phosphodiesterase-4 is reproducible and sensitive to increased norepinephrine in the rat heart. J Nucl Med 52:263–269

    Article  PubMed  Google Scholar 

  • Tipre DN, Fox JJ, Holt DP, Green G, Yu J, Pomper M, Dannals RF, Bengel FM (2008) In vivo PET imaging of cardiac presynaptic sympathoneuronal mechanisms in the rat. J Nucl Med 49:1189–1195

    Article  PubMed  Google Scholar 

  • Tsukamoto T, Morita K, Naya M, Inubushi M, Katoh C, Nishijima K, Kuge Y, Okamoto H, Tsutsui H, Tamaki N (2007) Decreased myocardial beta-adrenergic receptor density in relation to increased sympathetic tone in patients with nonischemic cardiomyopathy. J Nucl Med 48:1777–1782

    Article  CAS  PubMed  Google Scholar 

  • Van Dort ME, Kim JH, Tluczek L, Wieland DM (1997) Synthesis of 11C-labeled desipramine and its metabolite 2-hydroxydesipramine: potential radiotracers for PET studies of the norepinephrine transporter. Nucl Med Biol 24:707–711

    Article  PubMed  Google Scholar 

  • Van Waarde A, Meeder JG, Blanksma PK, Brodde O-E, Visser GM, Elsinga PH, Paans AMJ, Vaalburg W, Lie KI (1992) Uptake of radioligands by rat heart and lung in vivo:CGP 12177 does and CGP 26505 does not reflect binding to ß-adrenoceptors. Eur J Pharmacol 222:107–112

    Article  PubMed  Google Scholar 

  • van Waarde A, Vaalburg W, Doze P, Bosker FJ, Elsinga PH (2004) PET imaging of beta-adrenoceptors in human brain: a realistic goal or a mirage? Curr Pharm Des 10:1519–1536

    Article  PubMed  Google Scholar 

  • Vasdev N, LaRonde FJ, Woodgett JR, Garcia A, Rubie EA, Meyer JH, Houle S, Wilson AA (2008) Rationally designed PKA inhibitors for positron emission tomography: Synthesis and cerebral biodistribution of N-(2-(4-bromocinnamylamino)ethyl)-N-[11C]methyl-isoquinoline-5-sulfonamide. Bioorg Med Chem 16:5277–5284

    Article  CAS  PubMed  Google Scholar 

  • Wehrens XH, Lehnart SE, Reiken S, Vest JA, Wronska A, Marks AR (2006) Ryanodine receptor/calcium release channel PKA phosphorylation: a critical mediator of heart failure progression. Proc Natl Acad Sci U S A 103:511–518

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wehrwein EA, Parker LM, Wright AA, Spitsbergen JM, Novotny M, Babankova D, Swain GM, Habecker BA, Kreulen DL (2008) Cardiac norepinephrine transporter protein expression is inversely correlated to chamber norepinephrine content. Am J Physiol Regul Integr Comp Physiol 295:R857–R863

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong W, Scott JD (2004) AKAP signalling complexes: focal points in space and time. Nat Rev Mol Cell Biol 5:959–970

    Article  CAS  PubMed  Google Scholar 

  • Woolard J, Bennett T, Dunn WR, Heal DJ, Aspley S, Gardiner SM (2004) Acute cardiovascular effects of sibutramine in conscious rats. J Pharmacol Exp Ther 308:1102–1110

    Article  CAS  PubMed  Google Scholar 

  • Yu M, Bozek J, Lamoy M, Guaraldi M, Silva P, Kagan M, Yalamanchili P, Onthank D, Mistry M, Lazewatsky J, Broekema M, Radeke H, Purohit A, Cdebaca M, Azure M, Cesati R, Casebier D, Robinson SP (2011) Evaluation of LMI1195, a novel 18F-labeled cardiac neuronal PET imaging agent, in cells and animal models. Circ Cardiovasc Imaging 4:435–443

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip H. Elsinga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thackeray, J.T., DaSilva, J.N., Elsinga, P.H. (2015). Tracers for Sympathetic Cardiac Neurotransmission Imaging. In: Slart, R., Tio, R., Elsinga, P., Schwaiger, M. (eds) Autonomic Innervation of the Heart. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45074-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-45074-1_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45073-4

  • Online ISBN: 978-3-662-45074-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics