Skip to main content

Mastering Nano-objects with Photoswitchable Molecules for Nanotechnology Applications

  • Chapter
  • First Online:
Organic Nanophotonics

Part of the book series: Nano-Optics and Nanophotonics ((NON))

Abstract

Advance in the fabrication of nano-objects becomes more important for the development of new nanodevices with local properties leading to new functional devices. In this direction, the assembly of nanometer-scaled building objects into device configurations and functionalization is a promising investigated research field in nanotechnology. Optical recording and photofabrication techniques that exploit changes in material properties have gained importance, and there is a requirement for a decrease of the dimensions of the recording and processing surfaces. Photochromic materials leading to submicron structures responding to stimuli and in particular light are the best materials that exhibit multifunctional behaviors. Photomechanical properties of azopolymers show the perfect performance in photoinduced nanopatterning and reshaping by tailored light fields. Azopolymer nanostructures are then recognized as an excellent choice for a broad range of fundamental and applied research in modern nanotechnology. This chapter shows how polymer nanofilms, nanotubes, nanospheres, or nanowires containing azobenzene can be controlled by light for new photonics applications. Spatially confined excitation of unidirectional motions could make possible the local control of mechanical properties of the material and its structuration. The unprecedented flexibility of the reported photofluidization lithography with this material allows producing well-defined structures as lines, ellipsoids, rectangles, and circles at azopolymer surface with several tenth nanometers structural features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S.F.Y. Li, S.S. Mark, L.J. Kricka, Polymeric nanotubes and nanorods for biomedical applications. Cur. Nanosci. 5, 182–188 (2014)

    Article  Google Scholar 

  2. A. Priimagi, A. Shevchenko, Azopolymer-based micro—and nanopatterning for photonic applications. J. Polym. Sci. Part B: Polym. Phys. 52(3), 163–182 (2014)

    Article  Google Scholar 

  3. H. Zollinger, Azo and diazo chemistry: aliphatic and aromatic compounds (Interscience Publishers, New York, 1961)

    Google Scholar 

  4. N.K. Viswanathan, D.Y. Kim, S. Bian, J. Williams, W. Liu, L. Li, L. Samuelson, J. Kumar, S.K. Tripathy, Surface relief structures on azo polymer films. J. Mater. Chem. 9, 1941–1955 (1999)

    Article  Google Scholar 

  5. X. Wang, J. Yin, X. Wang, Self-structured surface patterns on epoxy-based azo polymer filmsinduced by laser light irradiation. Macromolecules 44, 6856–6867 (2011)

    Article  Google Scholar 

  6. R.J. Moerland, J.E. Koskela, A. Kravchenko, M. Simberg, S. van der Vegte, M. Kaivola, A. Priimagi, R.H.A. Ras, Large-area arrays of three-dimensional plasmonic subwavelength-sized structures from azopolymer surface-relief gratings. Mater. Horiz. 1, 74–80 (2014)

    Article  Google Scholar 

  7. G. Ye, C. Yang, X. Wang, Sensing diffraction gratings of antigen-responsive hydrogel for human immunoglobulin-g detection. Macromol. Rapid Commun. 31, 1332–1336 (2010)

    Article  Google Scholar 

  8. H. PilHo, Y. Fadong, L. Lian, K. Myunghwan, R. Mosurkal, A.L. Samuelson, J. Kumar, Simple fabrication of zinc oxide nanostructures. J. Mater. Chem. 18, 637–639 (2008)

    Article  Google Scholar 

  9. Z. Sekkat, S. Kawata, Laser nanofabrication in photoresists and azopolymers. Laser Photonics Rev. 8(1), 1–26 (2014)

    Article  Google Scholar 

  10. R.H. Lambeth, J. Park, H. Liao, D.J. Shir, S. Jeon, J.A. Rogers, J.S. Moore, Proximity field nanopatterning of azopolymer thin films. Nanotechnology 21, 165301 (2010)

    Article  Google Scholar 

  11. S. Ahmadi Kanjani, R. Barille, B.S. Dabos-Seignon, J.-M. Nunzi, E. Ortyl, S. Kucharski, Multistate polarization addressing using one single beam in an azopolymer film. Opt. Lett. 30(15), 1986–1988 (2005)

    Article  Google Scholar 

  12. S. Ahmadi Kanjani, R. Barille, B.S. Dabos-Seignon, J.-M. Nunzi, E. Ortyl, S. Kucharski, Incoherent light induced self-organisation of molecules. Opt. Lett. 30(23), 3177–3179 (2005)

    Article  Google Scholar 

  13. E. Heydari, E. Mohajerani, A. Shams, All optical switching in azo-polymer planar waveguide. Opt. Comm. 284(5), 1208–1212 (2011)

    Article  Google Scholar 

  14. Y. Luo, J. Zhou, Q. Yan, W. Su, Z. Li, Q. Zhang, J. Huang, K. Wang, Optical manipulable polymer optical fiber Bragg gratings with azopolymer as core material. Appl. Phys. Lett. 91, 071110 (2007)

    Article  Google Scholar 

  15. R. Barille, Y. Morille, D.G. Perez, S. Kucharski, S. Zielinska, E. Ortyl, Simple turbulence measurements with Azopolymer thin films. Opt. Lett. 38(7), 1128–1130 (2013)

    Article  Google Scholar 

  16. A. Consortini, Y.Y. Sun, G. Conforti, A mixed method for measuring the inner scale of atmospheric turbulence. J. Mod. Opt. 37(10), 1555–1560 (1990)

    Article  Google Scholar 

  17. R. Barille, R. Janik, S. Kucharski, J. Eyer, F. Letournel, Photo-responsive polymer with erasable and reconfigurable micro- and nano-patterns: An in vitro study for neuron guidance. Colloids Surf. B. 88(1), 63–71 (2011)

    Article  Google Scholar 

  18. R. Janik, S. Kucharski, A. Sobolewska, R. Barille, Chemical modification of glass surface with a monolayer of nonchromophoric and chromophoric methacrylate terpolymer. Appl. Surf. Sci. 257(3), 861–866 (2010)

    Article  Google Scholar 

  19. D.T. Bong, T.D. Clark, J.R. Granja, M.R. Ghadiri, Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40, 988 (2001)

    Article  Google Scholar 

  20. J. Martín, J. Maiz, J. Sacristan, C. Mijangos, Tailored polymer-based nanorods and nanotubes by “template synthesis”: from preparation to applications. Polymer 53, 1149–1166 (2012)

    Article  Google Scholar 

  21. M. Steinhart, J.H. Wendorff, A. Greiner, R.B. Wehrspohn, K. Nielsch, J. Schilling, J. Choi, U. Gösele, Polymer nanotubes by wetting of ordered porous templates. Science 296(5575), 1997 (2002)

    Article  Google Scholar 

  22. Banu S, Birtwell S, Chen Y, Galitonov G, Morgan H, Zheludev N (2006) High capacity nano-optical diffraction barcode tagging for biological and chemical applications, NSTI-Nanotech, 1

    Google Scholar 

  23. R. Barillé, P. Tajalli, J.M. Nunzi, S. Zielińskaa, S. Kucharski, E. Ortyl, surface relief grating on azopolymer nanosurface. Appl. Phys. Lett. 95, 053102 (2009)

    Article  Google Scholar 

  24. I. Freund, M. Deutsch, A. Sprecher, Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys. J. 50, 693–712 (1986)

    Article  Google Scholar 

  25. H.M. Liem, P. Etchegoin, K.S. Whitehead, D.C. Bradley, Raman anisotropy measurements: An effective probe of molecular orientation in conjugated polymer thin films. Adv. Funct. Mater. 3(1), 66–72 (2003)

    Article  Google Scholar 

  26. M.I. Klima, A.V. Kotov, L.A. Gribov, Analysis of the vibrational spectrum of azobenzene. J. Struct. Chem. 13(6), 987–990 (1973)

    Article  Google Scholar 

  27. C.M. Stuart, R.R. Frontiera, R.A. Mathis, Excited-state structure and dynamics of cis- and trans-azobenzene from resonance Raman intensity analysis. J. Phys. Chem. A 111, 12072–12080 (2007)

    Article  Google Scholar 

  28. S. Frisk, R.M. Ikeda, D.B. Chase, J.F. Rabolt, Determination of the molecular orientation of Poly(propylene terephthalate) fibers using polarized Raman spectroscopy: a comparison of methods. Appl. Spect. 58(3), 279–286 (2004)

    Article  Google Scholar 

  29. M. Janko, P. Davydovskaya, M. Bauer, A. Zink, R.W. Stark, Anisotropic Raman scattering in collagen bundles. Opt. Lett. 35(16), 2765–2767 (2010)

    Article  Google Scholar 

  30. R.D. Schaller, R.J. Saykally, Y.R. Shen, F. Lagugné-Labarthet, Poled polymer thin-film gratings studied with far-field optical diffraction and second-harmonic near-field microscopy. Opt. Lett. 28(15), 1296–1298 (2003)

    Article  Google Scholar 

  31. F. Eisert, O. Dannenberger, M. Buck, Molecular orientation determined by second-harmonic generation: Self-assembled monolayers. Phys. Rev. B 58(16), 10860–10870 (1998)

    Article  Google Scholar 

  32. J. Prasad Raoa, K.E. Geckeler, ‘Polymer nanoparticles preparation techniques and size-control parameters’. Prog. Polym. Sci. 36, 887–913 (2011)

    Article  Google Scholar 

  33. M. Alcoutlabi, G.B. McKenna, Effects of confinement on material behaviour at the nanometer size scale. J. Phys.: Condens. Matter 17(15), R461 (2005)

    Google Scholar 

  34. C. Zhang, Y. Guo, R.D. Priestley, Glass transition temperature of polymer nanoparticles under soft and hard confinement. Macromolecules 44(10), 4001–4006 (2011)

    Article  Google Scholar 

  35. C. Zhang, Y. Guo, R.D. Priestley, Characteristic length of the glass transition in isochorically confined polymer glasses. ACS Macro Lett. 3, 501–505 (2014)

    Article  Google Scholar 

  36. L. Zhang, A. Eisenberg, Multiple morphologies of “crew-cut” aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science 268, 1728 (1995)

    Article  Google Scholar 

  37. V.V. Lulevich, I.L. Radtchenko, G.B. Sukhorukov, O.I. Vinogradova, Deformation properties of nonadhesive polyelectrolyte microcapsules studied with the atomic force microscope. J. Phys. Chem. B 107, 2735 (2003)

    Article  Google Scholar 

  38. A. Garreau, F. Massuyeau, S. Cordier, Y. Molard, E. Gautron, P. Bertoncini, E. Faulques, J. Wery, B. Humbert, A. Bulou, J.L. Duvail, Color control in coaxial two-luminophore nanowires. ACS Nano. 7(4), 2977–2987 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Barillé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barillé, R., Ortyl, E., Zielinska, S., Nunzi, J. (2015). Mastering Nano-objects with Photoswitchable Molecules for Nanotechnology Applications. In: Zhao, Y. (eds) Organic Nanophotonics. Nano-Optics and Nanophotonics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45082-6_7

Download citation

Publish with us

Policies and ethics