Skip to main content

Use of Mycorrhizal Fungi for Forest Plantations and Minesite Rehabilitation

  • Chapter
  • First Online:
Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration

Part of the book series: Soil Biology ((SOILBIOL,volume 41))

Abstract

Mycorrhizal fungi are integrated components of sustainable ecosystem with the ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) fungi being the two most prominent and ecologically crucial mutualistic associations in terrestrial habitats. Areas for new plantations and minesites are often characterised with absence or low diversity, and/or incompatibility of mycorrhizal inoculants in the soil, which is considered as an essential constraint limiting the establishment of plantations and vegetation. The introduction of effective mycorrhizal fungi to the new sites is recommended along with the plant species involved in plantation and revegetation programmes. Inoculation of seedlings in plantation nursery is logistically feasible. Currently, many nurseries preferably use spore inoculants of ECM fungi although several different kinds of inoculants are adopted in forest practices. This chapter presents an overview of the development and application of mycorrhizal technology for forest plantations and minesite rehabilitation. Sources of inoculants, mycorrhizal formation, host specificity and inoculation effectiveness are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LK, Robson AD (1977) The distribution and abundance of vesicular arbuscular endophytes in some Western Australian soils. Aust J Bot 25:515–522

    Google Scholar 

  • Abbott LK, Robson AD (1982) The role of vesicular-arbuscular mycorrhizal fungi and selection of fungi for inoculation. Aust J Agric Res 33:389–408

    Google Scholar 

  • Abbott LK, Robson AD (1991) Factors influencing the occurrence of vesicular-arbuscular mycorrhizas. Agric Ecosyst Environ 35:121–150

    Google Scholar 

  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:426–436

    CAS  PubMed  Google Scholar 

  • Amir H, Jasper DA, Abbott LK (2008) Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza 19:1–6

    CAS  PubMed  Google Scholar 

  • Amora-Lazcano E, Vazquez MM, Azcon R (1998) Response of nitrogen-transforming microorganisms to arbuscular mycorrhizal fungi. Biol Fert Soils 27:65–70

    CAS  Google Scholar 

  • Ashwath N, Cusbert PC, Bayliss B, McLaughlin M, Hunt C (1993) Chemical properties of mine spoils and selected natural soils of the Alligator Rivers Region – implications for establishing native plants on mine spoils. In: Proceedings of the waste rock dump symposium, Darwin N.T., AGPS, Canberra

    Google Scholar 

  • Barcan VSH, Kovnatsky EF, Smetannikova MS (1998) Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Pollut 103:173–195

    CAS  Google Scholar 

  • Behie SW, Bidochka MJ (2013) Potential agricultural benefits through biotechnological manipulation of plant fungal associations. Bioessays. doi:10.1002/bies.201200147

    PubMed  Google Scholar 

  • Bending GD, Poole EJ, Whipps JM, Read DJ (2002) Characterisation of bacteria from Pinus sylvestris-Suillus luteus mycorrhizas and their effects on root–fungus interactions and plant growth. FEMS Microbiol Ecol 39:219–227

    CAS  PubMed  Google Scholar 

  • Bi YL, Wu FU, Wu YK (2005) Application of arbuscular mycorrhizas in ecological restoration of areas affected by coal mining in China. Acta Ecol Sin 25:2068–2073

    CAS  Google Scholar 

  • Bois G, Bertrand A, Piche Y, Fung M, Khasa DP (2006) Growth, compatible solute and salt accumulation of five mycorrhizal fungal species grown over a range of NaCl concentrations. Mycorrhiza 16:99–109

    CAS  PubMed  Google Scholar 

  • Brundrett MC, Ashwath N (2013) Glomeromycotan mycorrhizal fungi from tropical Australia III. Measuring diversity in natural and disturbed habitats. Plant Soil. doi:10.1007/s11104-013-1613-4

    Google Scholar 

  • Brundrett MC, Ashwath N, Jasper DA (1996) Mycorrhizas in the Kakadu region of tropical Australia. Plant Soil 184:173–184

    Google Scholar 

  • Cairney JWG, Chambers SM (1999) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin

    Google Scholar 

  • Cao J, Tang Y, Qin S, Hou Y (2005) Dual inoculation of Mimosaceae seedlings with vesicular arbuscular mycorrhizal fungi and Rhizobium. In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorrhizal research for forestry in Asia. ACIAR proceedings no. 62. ACIAR, Canberra, pp 119–121

    Google Scholar 

  • Castellano MA, Molina R (1989) Mycorrhiza. In: Landis TD, Tinus RW, McDonald SE, Barnett JP (eds) The biological component: nursery pests and mycorrhizae. Vol. 5. The container tree nursery manual. Agric. handbook 674. USDA Forest Service, Washington, DC, pp 101–167

    Google Scholar 

  • Chai DD, Guo SJ, Sun XB, Qin TT (2013) The major factors affecting ectomycorrhizal fungi diversity in the forest ecosystem. Adv J Food and Technol 5(7):879–890

    Google Scholar 

  • Chang ST (2008) Overview of mushroom cultivation and utilization as functional foods. In: Cheung PCK (ed) Mushrooms as functional foods. Wiley, Hoboken, NJ, pp 1–33

    Google Scholar 

  • Chapela IH, Osher LJ, Horton TR, Henn MR (2001) Ectomycorrhizal fungi introduced with exotic pine plantations induce soil carbon depletion. Soil Biol Biochem 33:1733–1740

    CAS  Google Scholar 

  • Chen YL (2002) Mycorrhizal synthesis of Tuber melanosporum on Castanopsis. Edible Fungi China 21:15–17

    Google Scholar 

  • Chen YL (2004) Song rong (Tricholoma matsutake), a valuable mushroom from China: consumption, development and sustainability. In: Kusters K, Belcher B (eds) Forest products, livelihoods and conservation: case studies of NTFP systems, vol 1. CIFOR, Bogor, pp 56–71

    Google Scholar 

  • Chen YL, Gong MQ, Wang FZ, Chen Y (1998) Study on mycorrhizal physiology of Eucalyptus urophylla inoculated with dual ECM and VAM fungi. For Res 11:237–242

    Google Scholar 

  • Chen YL, Brundrett M, Dell B, Gong MQ, Malajczuk N (1999) Bioassay measurements of mycorrhizal inoculum in soils from eucalypt plantations of varying ages in Western Australia. For Stud China 1(2):26–32

    Google Scholar 

  • Chen YL, Brundrett MC, Dell B (2000a) Effects of ectomycorrhizas and vesicular–arbuscular mycorrhizas, alone or in competition, on root colonization and growth of Eucalyptus globulus and E. urophylla. New Phytol 146:545–556

    Google Scholar 

  • Chen YL, Gong MQ, Xu DP, Zhong CL, Wang FZ, Chen Y (2000b) Screening and inoculant efficacy of Australian ectomycorrhizal fungi on Eucalyptus urophylla in field. For Res 13:569–576

    Google Scholar 

  • Chen YL, Gong MQ, Wang FZ, Chen Y (2001) Effects of inoculation with 11 ectomycorrhizal fungal isolates on growth and photosynthesis of Castanopsis hystrix saplings. For Res 14:515–522

    Google Scholar 

  • Chen YL, Dell B, Malajczuk N (2006a) Effect of Scleroderma spore density and age on mycorrhiza formation and growth of containerized Eucalyptus globulus and E. urophylla seedlings. New Forests 31:453–467

    Google Scholar 

  • Chen YL, Kang LH, Dell B (2006b) Inoculation of Eucalyptus urophylla with spores of Scleroderma in a nursery in south China: comparison of field soil and potting mix. For Ecol Manage 222:439–449

    Google Scholar 

  • Chen YL, Kang LH, Malajczuk N, Dell B (2006c) Selecting ectomycorrhizal fungi for inoculating plantations in south China: effect of Scleroderma on colonization and growth of exotic Eucalyptus globulus, E. urophylla, Pinus elliottii and P. radiata. Mycorrhiza 16:251–259

    PubMed  Google Scholar 

  • Chen YL, Liu S, Dell B (2007) Mycorrhizal status of Eucalyptus plantations in south China and implications for management. Mycorrhiza 17:527–535

    PubMed  Google Scholar 

  • Chevalier G, Frochot H (2000) La Truffe De Bourgogne (Tuber unicinatum Chatin). INRA, Cedex, France

    Google Scholar 

  • Chilvers GA (1973) Host range of some eucalypt mycorrhizal fungi. Aust J Bot 21:103–111

    Google Scholar 

  • Collins M, Brundrett M, Koch J, Sivasithamparam K (2007) Colonisation of jarrah forest bauxite-mine rehabilitation areas by orchid mycorrhizal fungi. Aust J Bot 55:653–664

    Google Scholar 

  • Colpaert JV, van Assche JA (1987) Heavy metal tolerance in some ectomycorrhizal fungi. Funct Ecol 1:415–421

    Google Scholar 

  • Colpaert JV, van Assche JA, Luijtens K, Van Assche JA (1992) The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestris L. New Phytol 120:127–135

    Google Scholar 

  • Corbett MH (1999) Revegetation of mined land in the wet–dry tropics of northern Australia: a review. Supervising Scientist Report 150, Supervising Scientist, Canberra

    Google Scholar 

  • Dahlberg A, Finlay RD (1999) Suillus. In: Cairney JWG, Chambers SM (eds) Ectomycorrhizal fungi: key genera in profile. Springer, Berlin, pp 34–64

    Google Scholar 

  • Daniels BA, McCool PM, Menge JA (1981) Evaluation of the commercial potential of the vesicular-arbuscular mycorrhizal fungus. New Phytol 87:345–354

    CAS  Google Scholar 

  • De la Cruz RE, Yantasath K (1993) Symbiotic associations. In: Kamis A, Taylor D (eds) Acacia mangium, growing and utilization. Winrock International and The Food and Agriculture Organization of the United Nations, Bangkok, pp 101–111

    Google Scholar 

  • Dell B, Malajczuk N (1995) Fertiliser requirements for ectomycorrhizal eucalypts in forest nurseries and field plantings in Southern China. In: Brundrett MC, Dell D, Malajczuk N, Gong M (eds) Mycorrhizas for plantation forestry in Asia, ACIAR monograph 62. ACIAR, Canberra, pp 96–100

    Google Scholar 

  • Dell B, Malajczuk N, Dunstan WA (2002) Persistence of some Australian Pisolithus species introduced into eucalypt plantations in China. For Ecol Manage 169:271–281

    Google Scholar 

  • Diem HG, Gauthier D (1982) Effet de l’infection endomycorhizienne (Glomus mosseae) sur la nodulation et la croissance de Casuarina equisetifolia. CR Acad Sci (Paris) 294:215–218

    Google Scholar 

  • Dixon RK, Pallardy SK, Garrett HE, Cox GS, Sander IL (1983) Comparative water relations of container-grown and bare-root ectomycorrhizal and nonmyocorrhizal Quercus velutina seedlings. Can J Bot 61:1559–1565

    Google Scholar 

  • Djuuna IAF, Abbott LK, Solaiman MZ (2009) Use of mycorrhiza bioassays in ecological studies. In: Varma A, Kharkwal AC (eds) Symbiotic fungi, Soil biology 18. Springer, Berlin

    Google Scholar 

  • Dos Santos VL, Muchovej RM, Borges AC, Neves JCL, Kasuya MCM (2001) Vesicular-arbuscular-/ecto-mycorrhiza succession in seedlings of Eucalyptus spp. Braz J Microbiol 32:81–86

    Google Scholar 

  • Duddridge JA, Malibari A, Read DJ (1980) Structure and function of mycorrhizal rhizomorphs with special reference to their role in water transport. Nature 287:834–836

    Google Scholar 

  • Duñabeitia MK, Hormilla S, Garcia-Plazaola JI, Txarterina K, Arteche U, Becerril JM (2004) Differential responses of three fungal species to environmental factors and their role in the mycorrhization of Pinus radiata D. Don. Mycorrhiza 14:11–18

    PubMed  Google Scholar 

  • Dunstan WA, Malajczuk N, Dell B (1998) Effects of bacteria on mycorrhizal development and growth of container grown Eucalyptus diversicolor F. Muell seedlings. Plant Soil 201:243–251

    Google Scholar 

  • Duponnois R, Founoune H, Lesueur D (2002) Influence of the controlled dual ectomycorrhizal and rhizobal symbiosis on the growth of Acacia mangium provenances, the indigenous symbiotic microflora and the structure of plant parasitic nematode communities. Geoderma 109:85–102

    Google Scholar 

  • Duponnois R, Founoune H, Masse D, Pontainer R (2005) Inoculation of Acacia holosericea with ectomycorrhizal fungi on a semiarid site in Senegal: growth response and influences on the mycorrhizal soil infectivity after 2 years plantation. For Ecol Manage 207:351–362

    Google Scholar 

  • FAO (2012) FAO statistical yearbook 2012. Food and Agriculture Organization of the United Nations (FAO), Rome

    Google Scholar 

  • Fay DA, Mitchell DT, Parkes MA (1997) A preliminary study of the mycorrhizal associations of tree seedlings growing on mine spoil at Avoca, Co. Wicklow. Special issue. In: The ecology of old mine sites. Proceedings of a workshop organised by the Mining Heritage Society of Ireland at the Geological Survey of Ireland, 18–19 Oct 1997

    Google Scholar 

  • Finlay RD, Odham G, Söderström B (1988) examined mycelial uptake, translocation and assimilation of nitrogen from 15N-labelled ammonium by Pinus sylvestris plants infected with four different ECM fungi. New Phytol 110:59–66

    Google Scholar 

  • Fogel E, Hunt G (1979) Fungal and arboreal biomass in a western Oregon Douglas fir ecosystem: distribution patterns and turnover. Can J For Res 9:245–256

    Google Scholar 

  • Founoune H, Duponnois R, Bâ AM (2002) Ectomycorrhization of Acacia mangium Willd. and Acacia holosericea A. Cunn. ex G. Don in Senegal: impact on plant growth, populations of indigenous symbiotic microorganisms and plant parasitic nematodes. J Arid Environ 50:325–332

    Google Scholar 

  • Frey-Klett P, Garbaye J, Tarkka M (2007) The mycorrhiza helper bacteria revisited. New Phytol 176:22–36

    CAS  PubMed  Google Scholar 

  • Fries N (1988) specific effects of diterpene resin acids on spore germination of ectomycorrhizal basidiomycetes. Experientia 44:1027–1030

    CAS  Google Scholar 

  • Gange AC, Gane DRJ, Chen YL, Gong MQ (2005) Dual colonization of Eucalyptus urophylla S. T. Blake by arbuscular and ectomycorrhizal fungi affects levels of insect herbivore attack. Agric For Entomol 7:253–263

    Google Scholar 

  • Garbaye J (1994) Helper bacteria: a new dimension to the mycorrhizal symbiosis. New Phytol 128:197–210

    Google Scholar 

  • Gardner JH, Malajczuk N (1988) Recolonisation of rehabilitated bauxite mine sites in Western Australia by mycorrhizal fungi. For Ecol Manage 24:27–42

    Google Scholar 

  • Gehring CA, Whitham TG (2002) Mycorrhizae-herbivore interactions: population and community consequences. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Heidelberg, pp 295–320

    Google Scholar 

  • Gianinazzi-Pearson V (1984) Host-fungus specificity in mycorrhizae. In: Verma DPS, Hohn TH (eds) Genes involved in plant–microbe interactions. Springer, Vienna, pp 225–253

    Google Scholar 

  • Gildon A, Tinker PB (1983) Interactions of vesicular-arbuscular mycorrhizal infection and heavy metal in plants.1: The effect of heavy metals on the development of vesicular–arbuscular mycorrhizas. New Phytol 95:247–261

    CAS  Google Scholar 

  • Giovannetti M, Sbrana C, Citernesi AS, Avio L (1996) Analysis of factors involved in fungal recognition responses to host derived signals by arbuscular mycorrhizal fungi. New Phytol 133:65–71

    Google Scholar 

  • Gogala N (1991) Regulation of mycorrhizal infection by hormonal factors produced by hosts and fungi. Experientia 47:331–340

    CAS  Google Scholar 

  • Gordon GJ, Gehring CA (2011) Molecular characterization of pezizalean ectomycorrhizas associated with pinyon pine during drought. Mycorrhiza 21:431–441

    PubMed  Google Scholar 

  • Grant CD, Loneragan WA (2001) The effect of burning on the understorey composition and vegetation succession of 11–13 year-old rehabilitated bauxite mines in Western Australia: community changes and vegetation succession. For Ecol Manage 145:255–279

    Google Scholar 

  • Green H, Larsen J, Olsson PA, Funck Jensen D, Jakobsen I (1999) Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl Environ Microbiol 65:1428–1434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grove TS, Le Tacon F (1993) Mycorrhiza in plantation forestry. In: Tommerup IC (ed) Mycorrhiza synthesis, vol 9, Advances in plant pathology. Academic, New York, pp 191–227

    Google Scholar 

  • Hall I, Brown G, Byars J (1994) The black truffle, 2nd edn. New Zealand Institute for Crop and Food Research, Christchurch

    Google Scholar 

  • Haselwandter K, Bowen GD (1996) Mycorrhizal relations in trees and agroforestry and land rehabilitation. For Ecol Manage 81:1–17

    Google Scholar 

  • Hilbert JL, Martin F (1988) Regulation of gene expression in ectomycorrhizas. I. Protein changes and he presence of ectomycorrhiza specific polypeptides in the Pisolithus-Eucalyptus symbiosis. New Phytol 110:339–346

    CAS  Google Scholar 

  • Hinz DA (1997) The return of the Gadayka tree after bauxite mining. Minerals Council of Australia, November 1997

    Google Scholar 

  • Horan DP, Chilvers GA (1990) Chemotropism, the key to ectomycorrhizal formation. New Phytol 116:297–302

    CAS  Google Scholar 

  • Horan DP, Chilvers GA, Lapeyrie FE (1988) Time sequence of the infection process in eucalypt ectomycorrhiza. New Phytol 109:451–458

    Google Scholar 

  • Hunt GA, Trappe JM (1987) Seasonal hypogeous sporocarp production in a western Oregon Douglas-fir stand. Can J Bot 65:438–445

    Google Scholar 

  • Hutton BJ, Dixon KW, Sivasithamparam K, Pate JS (1997) Effect of habitat disturbance on inoculum potential of ericoid endophytes of Western Australian heaths (Epacridaceae). New Phytol 135:739–744

    Google Scholar 

  • Ishida TA, Nara K, Ma S, Takano T, Liu S (2009) Ectomycorrhizal fungal community in alkaline–saline soil in northeastern China. Mycorrhiza 19:329–335

    PubMed  Google Scholar 

  • Jairus T, Mpumba R, Chinoya S, Tedersoo L (2011) Invasion potential and host shifts of Australian and African ectomycorrhizal fungi in mixed eucalypt plantations. New Phytol 192:179–187

    PubMed  Google Scholar 

  • Jansa J, Finlay R, Wallander H, Smith FA, Smith SE (2011) Role of mycorrhizal symbioses in phosphorus cycling. In: Bünemann EK (ed) Phosphorus in action. Springer, Berlin, pp 137–168

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) The loss of VA mycorrhizal infectivity during bauxite mining may limit the growth of Acacia pulchella R.Br. Aust J Bot 37:33–42

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. New Phytol 135:575–585

    Google Scholar 

  • Jones MD, Hutchinson TC (1986) The effect of mycorrhizal infection on the response of Betula papyrifera to nickel and copper. New Phytol 102:429–442

    CAS  Google Scholar 

  • Jones MD, Durall DM, Tinker PB (1998) A comparison of arbuscular and ectomycorrhizal Eucalyptus coccifera: growth response, phosphorus uptake efficiency and external hyphal production. New Phytol 140:125–134

    Google Scholar 

  • Jourand P, Ducousso M, Reid R, Majorel C, Richert C, Riss J, Lebrun M, Epron D (2010) Nickel-tolerant ectomycorrhizal Pisolithus albus ultramafic ecotype isolated from nickel mines in New Caledonia strongly enhance growth of the host plant Eucalyptus globulus at toxic nickel concentrations. Tree Physiol 30:1311–1319

    CAS  PubMed  Google Scholar 

  • Kariman K, Barker SJ, Finnegan PM, Tibbett M (2012) Dual mycorrhizal associations of jarrah (Eucalyptus marginata) in a nurse-pot system. Aust J Bot 60(8):661–668

    Google Scholar 

  • Kasuya MCM, Muchovej RMC, Muchovej JJ (1990) Influence of aluminium on in vitro formation of Pinus caribaea mycorrhiza. Plant Soil 124:73–79

    CAS  Google Scholar 

  • Katharina P, Didier B, Ana R, Berry AM (2011) Progress on research on actinorhizal plants. Funct Plant Biol 38:633–638

    Google Scholar 

  • Kendrick B, Berch S (1985) Mycorrhizae: applications in agriculture and forestry. In: Robinson CW (ed) Comprehensive biotechnology, vol 4. Pergamon, Oxford, pp 109–152

    Google Scholar 

  • Kernaghan G, Hambling B, Fung M, Khasa D (2002) In vitro selection of boreal ectomycorrhizal fungi for use in reclamation of saline–alkaline habitats. Restor Ecol 10:43–51

    Google Scholar 

  • Kessler KJ Jr, Blank RW (1972) Endogone sporocarps associated with sugar maple. Mycologia 64:634–638

    Google Scholar 

  • Kohout P, Sýkorová Z, Bahram M, Hadincová V, Albrechtová J, Tedersoo L, Vohník M (2011) Ericaceous dwarf shrubs affect ectomycorrhizal fungal community of the invasive Pinus strobus and native Pinus sylvestris in a pot experiment. Mycorrhiza 21:403–412

    PubMed  Google Scholar 

  • Lehto T, Zwiazek JJ (2011) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    PubMed  Google Scholar 

  • Lei Z, Jin J, Wang C (2005) Antagonism between ectomycorrhizal fungi and plant pathogens. In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorrhizal research for forestry in Asia. ACIAR proceedings no. 62. ACIAR, Canberra, pp 34–40

    Google Scholar 

  • Li X, Fu B, Yu J (2005) Inoculation of Pinus massoniana with ectomycorrhizal fungi: growth responses and suppression of pathogenic fungi. In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorrhizal research for forestry in Asia. ACIAR proceedings no. 62. ACIAR, Canberra, pp 34–40

    Google Scholar 

  • Liu RJ, Chen YL (2007) Mycorrhizology. Science Press, Beijing

    Google Scholar 

  • Liu RJ, Luo XS (1988) Effects of VAM on the growth, mineral nutrition and water relations of cherry. J Laiyang Agric Coll 5:6–13

    Google Scholar 

  • Lodge DJ (2000) Ecto- or arbuscular mycorrhizas, which are best? New Phytol 146:353–354

    Google Scholar 

  • Lodge DJ, Wentworth TR (1990) Negative associations among VA-mycorrhizal fungi and some ectomycorrhizal fungi inhabiting the same root system. Oikos 57:347–356

    Google Scholar 

  • Lu XH, Malajczuk N, Dell B (1998) Mycorrhiza formation and growth of Eucalyptus globulus seedlings inoculated with spores of various ectomycorrhizal fungi. Mycorrhiza 8:81–86

    Google Scholar 

  • Malajczuk N, Molina R, Trappe JM (1984) Ectomycorrhiza formation in Eucalyptus. II. The ultrastructure of compatible and incompatible mycorrhizal fungi and associated roots. New Phytol 96:43–53

    CAS  Google Scholar 

  • Malajczuk N, Dell B, Bougher NL (1987) Ectomycorrhiza formation in Eucalyptus. III. Superficial ectomycorrhizas initiated by Hysterangium and Cortinarius species. New Phytol 105:421–428

    Google Scholar 

  • Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of pine and eucalypt isolates of Pisolithus tinctorius on the roots of Eucalyptus urophylla in vitro. New Phytol 114:627–631

    Google Scholar 

  • Malajczuk N, Reddell P, Brundrett M (1994) Role of ectomycorrhizal fungi in minesite reclamation. In: Pfleger FL, Linderman RG (eds) Mycorrhizae and plant health. American Phytopathology Society symposium series, St Paul, MN

    Google Scholar 

  • Manjunath A, Bagyaraj DJ, Gopala Gowda HS (1984) Dual inoculation with VA mycorrhiza and Rhizobium is beneficial to Leucaena. Plant Soil 78:445–448

    Google Scholar 

  • Marques MS, Pagano M, Scotti MRMML (2001) Dual inoculation of a woody legume (Centrolobium tomentosum) with rhizobia and mycorrhizal fungi in south-eastern Brazil. Agroforest Syst 50:107–117

    Google Scholar 

  • Martin TP, Harris JR, Eaton GK, Miller OK (2003) The efficacy of ectomycorrhizal colonization of pin and scarlet oak in nursery production. J Environ Horticult 21:45–50

    Google Scholar 

  • Marx DH (1976) Synthesis of ectomycorrhizae on loblolly pine seedling with basidiospores of Pisolithus tinctorius. For Sci 22:13–20

    Google Scholar 

  • Marx DH, Altman JD (1979) Pisolithus tinctorius ectomycorrhiza improve survival and growth of pine seedlings on acid coal spoil in Kentucky and Virginia. Reclam Rev 2:23–37

    Google Scholar 

  • Marx DH, Cordell CE (1990) Development of Pisolithus tinctorius ectomycorrhizae on loblolly pine from spores sprayed at different times and rates. USDA Forest Service. Research Note SE-356

    Google Scholar 

  • Marx DH, Cordell CE, Maul SB, Ruehle JL (1989) Ectomycorrhizal development on pine by Pisolithus tinctorius in bare-root and container seedling nurseries. II. Efficacy of various vegetative and spore inocula. New Forests 3:57–66

    Google Scholar 

  • Marx DH, Murphy M, Parrish T, Marx S, Haigler D, Eckard D (1997) Root response of mature live oaks in coastal South Carolina to root zone inoculations with ectomycorrhizal fungal inoculants. J Arboricult 23:257–263

    CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1990) Ecological specificity of vesicular-arbuscular mycorrhizal associations. Mycol Res 94:120–122

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • Meharg AA (2003) The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol Res 107:1253–1265

    CAS  PubMed  Google Scholar 

  • Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3:88–92

    Google Scholar 

  • Mogge B, Loferer C, Agerer R, Hutzler P, Hartmann A (2000) Bacterial community structure and colonization patterns of Fagus sylvatica L. ectomycorrhizospheres as determined by florescence in situ hybridization and confocal laser scanning microscopy. Mycorrhiza 9:271–278

    Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance, and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, MN, pp 115–129

    Google Scholar 

  • Molina R, Trappe JM (1994) Biology of the ectomycorrhizal genus Rhizopogon. I. Host associations, host-specificity and pure culture syntheses. New Phytol 125:653–675

    Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbioises: community-ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 357–423

    Google Scholar 

  • Moyersoen B, Fitter AH (1999) Presence of arbuscular mycorrhizas in typical ectomycorrhizal host species from Cameroon and New Zealand. Mycorrhiza 8:247–253

    Google Scholar 

  • Munyanziza E, Kuyper TW (1995) Ectomycorrhizal synthesis on seedlings of Afzelia quanzensis Welw. using various types of inoculum. Mycorrhiza 5:283–287

    Google Scholar 

  • Nelson RR (1979) Some thoughts on coevolution of plant pathogenic fungi and their hosts. In: Nickel BB (ed) Host–parasite interfaces. Academic, New York, pp 17–25

    Google Scholar 

  • O’Brien MJ, Gomola CE, Horton TR (2011) The effect of forest soil and community composition on ectomycorrhizal colonization and seedling growth. Plant Soil 341:321–331

    Google Scholar 

  • Oliveira VL, Schmidt VDB, Bellei MM (1997) Patterns of arbuscular- and ecto-mycorrhizal colonization of Eucalyptus dunnii in southern Brazil. Ann For Sci 54:473–481

    Google Scholar 

  • Omon RM (1996) The effect of some mycorrhizal fungi and media on the growth of Shorea leprosula Miq. cuttings. Bull Penelitian Hutan 603:27–36

    Google Scholar 

  • Orlovich DA, Cairney JWG (2004) Ectomycorrhizal fungi in New Zealand: current perspectives and future directions. N Z J Bot 42:721–738

    Google Scholar 

  • Ortega U, Dunabeitia M, Menendez S, González-Murua C, Majada J (2004) Effectiveness of mycorrhizal inoculation in the nursery on growth and water relations of Pinus radiata in different water regimes. Tree Physiol 24:65–73

    CAS  PubMed  Google Scholar 

  • Osonubi O, Mulongoy K, Awotoye OO, Atayese MO, Okali DUU (1991) Effects of ectomycorrhizal and vesicular–arbuscular mycorrhizal fungi on drought tolerance of four leguminous woody seedlings. Plant Soil 136:131–143

    Google Scholar 

  • Parladé J, Pera J, Alvarez IF (1997) La mycorhization contrôlée du douglas dans le nord de l’espagne: premiers rèsultats en plantation. In: Le Tacon F (ed) Champignons et mycorhizes en foret. revue forestière française, Numéro spécial 1997, pp 163–173

    Google Scholar 

  • Paulitz TC, Linderman RG (1991) Lack of antagonism between the biocontrol agent Gliocladium virens and vesicular-arbuscular mycorrhizal fungi. New Phytol 117:303–308

    Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313

    PubMed  Google Scholar 

  • Quoreshi AM, Roy S, Greer CW, Beaudin J, McCurdy D, Khasa DP (2007) Inoculation of green alder (Alnus crispa) with Frankia-ectomycorrhizal fungal inoculant under commercial nursery production conditions. Native Plants J 8:271–281

    Google Scholar 

  • Ramos AC, Façanha AR, Feijó JA (2008) Proton (H+) flux signature for the presymbiotic development of the arbuscular mycorrhizal fungi. New Phytol 178:177–188

    CAS  PubMed  Google Scholar 

  • Rangarajan M, Narayanan R, Kandasamy D, Oblisami G (1990) Studies on the growth of certain ectomycorrhizal fungi in culture media and in the host under axenic conditions. In: Jalali BL, Chand H (ed) Trends in mycorrhizal research. Proceedings of the national conference on mycorrhiza, Hisar, India, pp 126–127

    Google Scholar 

  • Rao CS, Sharma GD, Shukla AK (1996) Ectomycorrhizal efficiency of various mycobionts with Pinus kesiya seedlings in forest and degraded soils. Proc Indian Natl Sci Acad B Biol Sci 62:427–434

    Google Scholar 

  • Read DJ, Boyd R (1986) Water relations of mycorrhizal fungi and their host plats. In: Ayres PG, Boddy L (eds) Water, fungi and plants. Cambridge University Press, Cambridge, pp 287–303

    Google Scholar 

  • Reddell P, Milnes AR (1992) Mycorrhizas and other specialized nutrient-acquisition strategies: Their occurrence in woodland plants from Kakadu and their role in rehabilitation of waste rock dumps at a local uranium mine. Aust J Bot 40:223–242

    CAS  Google Scholar 

  • Reddell P, Spain AV, Milnes AR, Hopkins M, Hignett CT, Joyce S, Playfair LA (1993) Indicators of ecosystem recovery in rehabilitated areas of the open strip bauxite mine, Gove, NT. Final report for Nabalco Pty Ltd, CSIRO Minesite Rehabilitation research Program, Adelaide

    Google Scholar 

  • Reddy MS, Satyanarayana T (2006) Interactions between ectomycorrhizal fungi and rhizospheric microbes. In: Mukerji KG, Manoharachary JS (eds) Microbial activity in the rhizosphere, vol 7, Soil biology. Springer, Berlin, pp 245–263

    Google Scholar 

  • Richardson DM, Rejmánek M (2004) Invasive conifers: a global survey and predictive framework. Divers Distrib 10:321–331

    Google Scholar 

  • Rincón A, Alvarez IF, Pera J (2001) Inoculation of containerized Pinus pinea L. seedlings with seven ectomycorrhizal fungi. Mycorrhiza 11:265–271

    PubMed  Google Scholar 

  • Saner P, Philipson C, Ong RC, Majalap N, Egli S, Hector A (2011) Positive effects of ectomycorrhizal colonization on growth of seedlings of a tropical tree across a range of forest floor light conditions. Plant Soil 338:411–421

    CAS  Google Scholar 

  • Santoso E (1991) Effect of mycorrhizal fungi on nutrient uptake of five dipterocarp seedlings. Bull Penelitian Hutan 532:11–18

    Google Scholar 

  • Saravesi K, Markkola A, Rautio P, Tuomi J (2011) Simulated mammal browsing and host gender effects on dual mycorrhizal Salix repens. Botany 89(1):35–42

    Google Scholar 

  • Savoie JM, Largeteau ML (2011) Production of edible mushrooms in forests: trends in development of a mycosilviculture. Appl Microbiol Biotechnol 89:971–979

    CAS  PubMed  Google Scholar 

  • Seva JP, Vilagrosa A, Valdecantos A, Cortina J, Vallejo VR, Bellot J (1996) Mycorrhization and application of urban compost for the improvement of survival and growth of Quercus ilex subsp. ballota seedlings in an arid zone. Cahiers Options Mediterraneennes 20:105–121

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    CAS  Google Scholar 

  • Song YY, Cao M, Xie LJ, Liang XT, Zeng RS, Su YJ, Huang JH, Wang RL, Luo SM (2011) Induction of DIMBOA accumulation and systemic defense responses as a mechanism of enhanced resistance of mycorrhizal corn (Zea mays L.) to sheath blight. Mycorrhiza 21:721–731

    CAS  PubMed  Google Scholar 

  • Stack RW, Sinclair WA (1975) Protection of Douglas-fir seedlings against Fusarium root rot by a mycorrhizal fungus in the absence of mycorrhiza formation. Phytopathology 65:468–472

    Google Scholar 

  • Summer ME, Rengasamy P, Naidu R (1998) Sodic soils: a reappraisal. In: Summer ME, Naidu R (eds) Sodic soils. Oxford University Press, New York, pp 3–17

    Google Scholar 

  • Supriyanto (1999) The effectiveness of some ectomycorrhizal fungi in alginate beads in promoting the growth of several dipterocarp seedlings. Biotropia 12:59–77

    Google Scholar 

  • Talbot NJ, Ebbole DJ, Hamer JE (1993) Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Plant Cell 5:1575–1590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tang M, Chen H (1995) The effect of vesicular–arbuscular mycorrhizas on the resistance of poplar to a canker fungus (Dothiorella gregaria). In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorrhizal research for forestry in Asia. ACIAR proceedings no. 62. ACIAR, Canberra, pp 34–40

    Google Scholar 

  • Theodorou C, Bowen GD (1987) Germination of basidiospores of mycorrhizal fungi in the rhizosphere of Pinus radiata D. Don. New Phytol 106:217–223

    Google Scholar 

  • Tibbett M, Ryan M, Barker S, Chen YL, Denton M, Edmonds-Tibbett T, Walker C (2008) The diversity of arbuscular mycorrhizas of selected Australian Fabaceae. Plant Biosyst 142:420–427

    Google Scholar 

  • Torres P, Honrubia M (1994) Basidiospore viability in stored slurries. Mycol Res 98:527–530

    Google Scholar 

  • Trappe JM (1977) Selection of fungi for ectomycorrhizal inoculation in nurseries. Annu Rev Phytopathol 15:203–222

    Google Scholar 

  • Viljoen A, Wingfield MJ, Crous PW (1992) Fungal pathogens in Pinus and Eucalyptus seedling nurseries in South Africa: a review. S Afr Forest J 161(1):45–51

    Google Scholar 

  • Walbert K, Ramsfield TD, Ridgway HJ, Jones EE (2010) Ectomycorrhizal species associated with Pinus radiata in New Zealand including novel association determined by molecular analysis. Mycorrhiza 20:209–215

    CAS  PubMed  Google Scholar 

  • Warcup JH (1980) Ectomycorrhizal associations of Australian indigenous plants. New Phytol 85:531–535

    Google Scholar 

  • Ward SC (2000) Soil development on rehabilitated bauxite mines in southwest Australia. Aust J Soil Res 38:453–464

    Google Scholar 

  • Waschke A, Sieh D, Tamasloukht M, Fischer K, Mann P, Franken P (2006) Identification of heavy metal-induced genes encoding glutathione S-transferases in the arbuscular mycorrhizal fungus Glomus intraradices. Mycorrhiza 17:1–10

    CAS  PubMed  Google Scholar 

  • West P (2006) Growing plantation forests. Springer, Berlin

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Wu FY, Bi YL, Wong MH (2009) Dual inoculation with an arbuscular mycorrhizal fungus and Rhizobium to facilitate the growth of alfalfa on coal mine substrates. J Plant Nutr 32:755–771

    Google Scholar 

  • Zaefarian F, Rezvani M, Ardakani MR, Rejali F, Miransari M (2013) Impact of mycorrhizae formation on the phosphorus and heavy-metal uptake of Alfalfa. Commun Soil Sci Plant Anal 44(8):1340–1352

    CAS  Google Scholar 

  • Zhang MQ (1995) Use of vesicular–arbuscular mycorrhizal fungi to promote tree growth in China. In: Brundrett M, Dell B, Malajczuk N, Gong M (eds) Mycorrhizal research for forestry in Asia. ACIAR proceedings no. 62. ACIAR, Canberra, pp 110–113

    Google Scholar 

  • Zhao Z (1995) Research on mycorrhizal associations of poplar. In: Brundrett MC, Dell B, Malajczuk N, Gong M (eds) Mycorrhizas for plantation forestry in Asia. ACIAR proceedings no. 62. ACIAR, Canberra, pp 62–66

    Google Scholar 

  • Zhou D, Hyde KD (2001) Host-specificity, host-exclusivity, and host-recurrence in saprobic fungi. Mycol Res 105:1449–1457

    Google Scholar 

Download references

Acknowledgements

Y.L.C. appreciates Professor Bernard Dell, Professor Lyn Abbott, Dr. Nick Malajczuk, Dr. Mark Brundrett, Dr. Chris Walker and Dr. François Le Tacon for their support and long-term collaboration. This study was financially supported by National Natural Science Foundation of China (31471946), International Foundation for Science (D-2894/1 & D-2894/2), Australian Centre for International Agricultural Research (F/9425) and International Tropical Timber Organization (PD 38/98 Rev.2(F)). The Australian Department of Education, Employment and Workplace Relations, Murdoch University and Chinese Academy of Forestry are acknowledged for granting scholarships and travel funds for a part of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Long Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, Y.L., Liu, R.J., Bi, Y.L., Feng, G. (2014). Use of Mycorrhizal Fungi for Forest Plantations and Minesite Rehabilitation. In: Solaiman, Z., Abbott, L., Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration. Soil Biology, vol 41. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45370-4_21

Download citation

Publish with us

Policies and ethics