Skip to main content

General Introduction to Upconversion Luminescence Materials

  • Chapter
  • First Online:
Photon Upconversion Nanomaterials

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Upconversion nanoparticles can emit ultraviolet/visible/near-infrared light under near-infrared excitation (anti-Stokes emission). This unique optical property precludes background fluorescence and light scattering from biological materials. The emission of multiple and narrow emission lines is an additional hallmark of upconversion nanoparticles that opens up new avenues for optical applications. The unique optical properties make the upconversion nanoparticles ideal for bio-imaging applications with attractive advantages such as no auto-fluorescence from bio-tissues and a large penetration depth. In this chapter, we give a general introduction to the upconversion luminescence materials from the aspects of energy transfer mechanism, category, chemical composition, nanosized upconversion materials, and so on.

Rui Wang, Xiaomin Li, and Fan Zhang contributed together to this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jablonski, A.: Efficiency of anti-stokes fluorescence in dyes. Nature 131, 839–840 (1933)

    Article  Google Scholar 

  2. Jablonski, A.: About the mechanism of photo-luminescence of dye phosphors. Z. Angew. Phys. 94, 38–46 (1935)

    Google Scholar 

  3. Tan, X., Luo, S.L., Wang, D.C., Su, Y.P., Cheng, T.M., Shi, C.M.: A NIR heptamethine dye with intrinsic cancer targeting, imaging and photosensitizing properties. Biomaterials 33, 2230–2239 (2012)

    Article  Google Scholar 

  4. Hong, G.S., Robinson, J.T., Zhang, Y.J., Diao, S., Antaris, A.L., Wang, Q.B., Dai, H.J.: In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 51, 9818–9821 (2012)

    Article  Google Scholar 

  5. Bawendi, M.G., Steigerwald, M.L., Brus, L.E.: The quantum mechanics of larger semiconductor clusters (“quantum dots”). Annu. Rev. Phys. Chem. 41, 477–496 (1990)

    Article  Google Scholar 

  6. Wang, Y., Herron, N.: Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J. Phys. Chem. 95, 525–532 (1991)

    Article  Google Scholar 

  7. Li, X.M., Zhang, F., Zhao, D.Y.: Highly efficient lanthanide upconverting nanomaterials: progresses and challenges. Nano Today 8, 643–676 (2013)

    Article  Google Scholar 

  8. Gamelin, D.R., Gudel, H.U.: Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. Accounts. Chem. Res. 33, 235–242 (2000)

    Article  Google Scholar 

  9. Jin, J., Wong, W.-T.: Encyclopedia of Inorganic and Bioinorganic Chemistry. Wiley, London (2011)

    Google Scholar 

  10. Franken, P.A., Weinreich, G., Peters, C.W., Hill, A.E.: Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961)

    Article  Google Scholar 

  11. Auzel, F.: Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004)

    Article  Google Scholar 

  12. Ovsyanki, V.V., Feofilov, P.P.: Mechanism of summation of electronic excitations in activated crystals. Sov. J. Exp. Theor. Phys. Lett. 3, 322–325 (1966)

    Google Scholar 

  13. Haase, M., Schafer, H.: Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011)

    Article  Google Scholar 

  14. Gu, Z.J., Yan, L., Tian, G., Li, S.J., Chai, Z.F., Zhao, Y.L.: Recent advances in design and fabrication of upconversion nanoparticles and their safe theranostic applications. Adv. Mater. 25, 3758–3779 (2013)

    Article  Google Scholar 

  15. Wang, R., Zhang, F.: NIR luminescent nanomaterials for biomedical imaging. J. Mater. Chem. B 2, 2422–2443 (2014)

    Article  Google Scholar 

  16. Li, X., Wang, R., Zhang, F., Zhou, L., Shen, D., Yao, C., Zhao, D.: Nd3+ sensitized up/down converting dual-mode nanomaterials for efficient in-vitro and in-vivo bioimaging excited at 800 nm. Sci. Rep. 3, 3536 (2013)

    Google Scholar 

  17. Wang, F., Liu, X.G.: Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009)

    Article  Google Scholar 

  18. Li, X., Zhang, F., Zhao, D.: Lab on upconversion nanoparticles: optical properties and applications engineering via designed nanostructure. Chem. Soc. Rev. doi:10.1039/C4CS00163J (2014)

  19. Chen, G.Y., Qju, H.L., Prasad, P.N., Chen, X.Y.: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics. Chem. Rev. 114, 5161–5214 (2014)

    Article  Google Scholar 

  20. Liang, H.J., Chen, G.Y., Li, L., Liu, Y., Qin, F., Zhang, Z.G.: Upconversion luminescence in Yb3+/Tb3+-codoped monodisperse NaYF4 nanocrystals. Opt. Commun. 282, 3028–3031 (2009)

    Article  Google Scholar 

  21. Dwivedi, Y., Thakur, S.N., Rai, S.B.: Study of frequency upconversion in Yb3+/Eu3+ by cooperative energy transfer in oxyfluoroborate glass matrix. Appl. Phys. B-lasers. O 89, 45–51 (2007)

    Article  Google Scholar 

  22. Pushkar, A.A., Uvarova, T.V., Kiiko, V.V.: Up-conversion multiwave (white) luminescence in the visible spectral range under excitation by IR laser diodes in the active BaY2F8:Yb3+, Pr3+ medium. Opt. Spectrosc. 111, 273–276 (2011)

    Article  Google Scholar 

  23. Joubert, M.F.: Photon avalanche upconversion in rare earth laser materials. Opt. Mater. 11, 181–203 (1999)

    Article  Google Scholar 

  24. Ronda, C.: Luminescence: From Theory to Applications. WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim ISBN: 978-3-527-31402-7 (2008)

    Google Scholar 

  25. Vandijk, J.M.F., Schuurmans, M.F.H.: On the nonradiative and radiative decay rates and a modified exponential energy gap law for 4f–4f transitions in rare-earth ions. J. Chem. Phys. 78, 5317–5323 (1983)

    Article  Google Scholar 

  26. Chen, G.Y., Ohulchanskyy, T.Y., Kumar, R., Agren, H., Prasad, P.N.: Ultrasmall monodisperse NaYF4:Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 4, 3163–3168 (2010)

    Article  Google Scholar 

  27. Sun, Y.J., Chen, Y., Tian, L.J., Yu, Y., Kong, X.G., Zhao, J.W., Zhang, H.: Controlled synthesis and morphology dependent upconversion luminescence of NaYF4:Yb, Er nanocrystals. Nanotechnology 18, 275609 (2007)

    Article  Google Scholar 

  28. Wang, L.Y., Li, Y.D.: Green upconversion nanocrystals for DNA detection. Chem. Commun. 42, 2557–2559 (2006)

    Article  Google Scholar 

  29. Kramer, K.W., Biner, D., Frei, G., Gudel, H.U., Hehlen, M.P., Luthi, S.R.: Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 16, 1244–1251 (2004)

    Article  Google Scholar 

  30. Wang, L.Y., Li, Y.D.: Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett. 6, 1645–1649 (2006)

    Article  Google Scholar 

  31. Suyver, J.F., Aebischer, A., Biner, D., Gerner, P., Grimm, J., Heer, S., Kramer, K.W., Reinhard, C., Gudel, H.U.: Novel materials doped with trivalent lanthanides and transition metal ions showing near-infrared to visible photon upconversion. Opt. Mater. 27, 1111–1130 (2005)

    Article  Google Scholar 

  32. De la Rosa, E., Salas, P., Desirena, H., Angeles, C., Rodriguez, R.A.: Strong green upconversion emission in ZrO2:Yb3+–Ho3+ nanocrystals. Appl. Phys. Lett. 87, 241912 (2005)

    Article  Google Scholar 

  33. Wang, G.F., Peng, Q., Li, Y.D.: Upconversion luminescence of monodisperse CaF2:Yb3+/Er3+ nanocrystals. J. Am. Chem. Soc. 131, 14200–14201 (2009)

    Article  Google Scholar 

  34. Wang, F., Liu, X.G.: Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J. Am. Chem. Soc. 130, 5642–5643 (2008)

    Article  Google Scholar 

  35. Chen, G.Y., Ohulchanskyy, T.Y., Kachynski, A., Agren, H., Prasad, P.N.: Intense visible and near-infrared upconversion photoluminescence in colloidal LiYF4:Er3+ nanocrystals under excitation at 1490 nm. ACS Nano 5, 4981–4986 (2011)

    Article  Google Scholar 

  36. Chen, D.Q., Lei, L., Yang, A.P., Wang, Z.X., Wang, Y.S.: Ultra-broadband near-infrared excitable upconversion core/shell nanocrystals. Chem. Commun. 48, 5898–5900 (2012)

    Article  Google Scholar 

  37. Chen, G.Y., Liu, H.C., Somesfalean, G., Liang, H.J., Zhang, Z.G.: Upconversion emission tuning from green to red in Yb3+/Ho3+-codoped NaYF4 nanocrystals by tridoping with Ce3+ ions. Nanotechnology 20, 275609 (2009)

    Article  Google Scholar 

  38. Rakov, N., Maciel, G.S., Sundheimer, M.L., Menezes, S.L.D., Gomes, A.S.L., Messaddeq, Y., Cassanjes, F.C., Poirier, G., Ribeiro, S.J.L.: Blue upconversion enhancement by a factor of 200 in Tm3+-doped tellurite glass by codoping with Nd3+ ions. J. Appl. Phys. 92, 6337–6339 (2002)

    Article  Google Scholar 

  39. Wang, L.L., Qin, W.P., Liu, Z.Y., Zhao, D., Qin, G.S., Di, W.H., He, C.F.: Improved 800 nm emission of Tm3+ sensitized by Yb3+ and Ho3+ in beta-NaYF4 nanocrystals under 980 nm excitation. Opt. Express 20, 7602–7607 (2012)

    Article  Google Scholar 

  40. Bol, A.A., van Beek, R., Meijerink, A.: On the incorporation of trivalent rare earth ions in II-VI semiconductor nanocrystals. Chem. Mater. 14, 1121–1126 (2002)

    Article  Google Scholar 

  41. Heer, S., Kompe, K., Gudel, H.U., Haase, M.: Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv. Mater. 16, 2102–2105 (2004)

    Article  Google Scholar 

  42. Judd, B.R.: Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750–761 (1962)

    Article  Google Scholar 

  43. Ofelt, G.S.: Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 37, 511–520 (1962)

    Article  Google Scholar 

  44. Chen, G.Y., Somesfalean, G., Liu, Y., Zhang, Z.G., Sun, Q., Wang, F.P.: Upconversion mechanism for two-color emission in rare-earth-ion-doped ZrO2 nanocrystals. Phys. Rev. B 75, 195204 (2007)

    Article  Google Scholar 

  45. Suyver, J.F., Aebischer, A., Garcia-Revilla, S., Gerner, P., Gudel, H.U.: Anomalous power dependence of sensitized upconversion luminescence. Phys. Rev. B 71, 195204 (2005)

    Article  Google Scholar 

  46. Pollnau, M., Gamelin, D.R., Luthi, S.R., Gudel, H.U., Hehlen, M.P.: Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 61, 3337–3346 (2000)

    Article  Google Scholar 

  47. Gamelin, D.R., Gudel, H.U.: Upconversion processes in transition metal and rare earth metal systems. Transit. Met. Rare Earth Compd. Excited States, Transitions, Interact. Ii 214, 1–56 (2001)

    Article  Google Scholar 

  48. Moncorge, R., Benyattou, T.: Excited-state absorption of Ni2+ in MgF2 and MgO. Phys. Rev. B 37, 9186–9196 (1988)

    Article  Google Scholar 

  49. Wermuth, M., Gudel, H.U.: Photon avalanche in Cs2ZrBr6:Os4+. J. Am. Chem. Soc. 121, 10102–10111 (1999)

    Article  Google Scholar 

  50. Wermuth, M., Gudel, H.U.: Photon avalanche in Cs2ZrCl6:Os4+. J. Chem. Phys. 114, 1393–1404 (2001)

    Article  Google Scholar 

  51. Wermuth, M., Güdel, H.U.: Upconversion luminescence in a 5d transition-metal ion system: Cs2ZrCl6: Os4+. Chem. Phys. Lett. 281, 81–85 (1997)

    Article  Google Scholar 

  52. Gamelin, D.R., Gudel, H.U.: Excited-state dynamics and sequential two-photon upconversion excitation of Mo3+-doped chloro- and bromo-elpasolites. J. Phys. Chem. B 104, 10222–10234 (2000)

    Article  Google Scholar 

  53. Gamelin, D.R., Güdel, H.U.: Two-photon spectroscopy of d3 transition metals: near-IR-to-visible upconversion luminescence by Re4+ and Mo3+. J. Am. Chem. Soc. 120, 12143–12144 (1998)

    Article  Google Scholar 

  54. Gamelin, D.R., Gudel, H.U.: Spectroscopy and dynamics of Re4+ near-IR-to-visible luminescence upconversion. Inorg. Chem. 38, 5154–5164 (1999)

    Article  Google Scholar 

  55. Zhou, G., Wang, D., Wang, X., Shao, Z., Jiang, M.: Two-photon absorption and excited state absorption properties of an organic dye PSPI. Opt. Commun. 241, 215–219 (2004)

    Article  Google Scholar 

  56. Liu, Y., Tu, D., Zhu, H., Chen, X.: Lanthanide-doped luminescent nanoprobes: controlled synthesis, optical spectroscopy, and bioapplications. Chem. Soc. Rev. 42, 6924–6958 (2013)

    Article  Google Scholar 

  57. Bunzli, J.C.G., Piguet, C.: Taking advantage of luminescent lanthanide ions. Chem. Soc. Rev. 34, 1048–1077 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhang, F. (2015). General Introduction to Upconversion Luminescence Materials. In: Photon Upconversion Nanomaterials. Nanostructure Science and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45597-5_1

Download citation

Publish with us

Policies and ethics