Skip to main content

Soil modelling considering the influence of gas inclusions in pore water below the piezometric line - a short introduction

  • Conference paper
  • First Online:
Aktuelle Forschung in der Bodenmechanik 2015

Abstract

When modelling soil below the piezometric line, mostly two-phase models are used in traditional soil mechanics. Such two-phase models consider solids and water, which is mostly assumed to be non-compressible. Under certain conditions it may be beneficial to incorporate the variable compressibility of water, resulting from gas inclusions contained in the pore water. Especially if looking at relatively fast load changes such an approach may lead to improved solutions concerning time-dependent distribution of pore water pressure and deformation characteristics of soil. The paper takes reference of past developments and illustrates the current state with practical geotechnical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 149.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biot M.A. (1941): General Theory of Three-Dimensional Consolidation. Journal of Applied Physics, Vol. 12, February 1941, 155–164, New York

    Article  Google Scholar 

  2. Bishop A.W. (1954): The use of pore-pressure coefficients in practice. Géotechnique, Vol. 4(4), 148–152

    Article  Google Scholar 

  3. deBoer R. (2000): Theory of Porous Media, ISBN 3 540 65982 X, Springer Berlin

    Book  Google Scholar 

  4. GBB (2011): Principles for the Design of Bank and Bottom Protection for Inland Waterways (GBB) Issue 2010 -BAW Code of Practice. ISSN 2192 9807, published by Bundesanstalt für Wasserbau (BAW) Karlsruhe, download 2014-12-23: http://vzb.baw.de/publikationen.php?file=merkblaetter/0/BAWCodeofPractice_Principles_Bank_Bottom_Protection_Inland_Waterways_GBB_2010.pdf

  5. Jardine R.J., Gens A., Hight D.W., Coop M.R. (2004): Developments in understanding soil behaviour. In: Advances in Geotechnical Engineering: The Skempton Conference, Jardine et al. (eds), Vol. 1, ISBN 0 7277 3264 1, 103-206, Thomas Telford London

    Google Scholar 

  6. Köhler H.-J. (2003): Transient excess pore water pressure causing structure deformation and hydraulic soil failure. In: Reconstruction of Historical Cities and Geotechnical Engineering -Proc. Int. Geot. Conf. dedicated to the Tercentenary of St. Petersburg, Ilichev & Ulitskyk (eds), Vol. 1, ISBN 5 93093 204 2, 327-334,ASV Moscow

    Google Scholar 

  7. Köhler H.-J., Feddersen I., Schwab R. (1999a): Unsaturated conditions below the groundwater table and its effect on pore pressure, soil and structure deformation. In: Geotechnical Engineering for Transportation Infrastructure -Proc. 12th European Conference Soil Mechanics, Barends F.B.J. et al. (eds.), Amsterdam, 1109-1115, Balkema Rotterdam

    Google Scholar 

  8. Köhler H.-J., Feddersen I., Schwab R. (1999b): Soil and structure deformations due to reconstruction of an old lock built on unsaturated submerged clay. In: Pre-Failure Characteristics of Geomaterials -Proc. 2nd IS, Jamiolkowski, Lancellotta & Lo Presti (eds), Torino, Vol. 1, ISBN 90 5809 076 0, 793-800, Balkema Rotterdam

    Google Scholar 

  9. Köhler H.-J., Haussecker H., Spies H., Beringer, O. (1999c): Fluidisation and deformation of submerged soil due to fluctuating water level. In: Geotechnical Engineering for Transportation Infrastructure -Proc. 12th European Conference Soil Mechanics, Barends F.B.J. et al. (eds.), Amsterdam, 921-927, Balkema Rotterdam

    Google Scholar 

  10. Köhler H.-J. & Koenders M.A. (2003): Direct visualisation of underwater phenomena in soil-fluid interaction and analysis of the effects of an ambient pressure drop on unsaturated media. In: Journal of Hydraulic Research (JHR), García M. et al. (eds.), Madrid, Vol. 41, No 1, 69–78

    Google Scholar 

  11. Köhler H.-J. & Schwab R. (2001): Influence of external pressure changes acting on unsaturated submerged soils. In: Proc. 15th ICSMGE, Istanbul, Vol. 1, ISBN 90 2651 839 0, 593-596, Balkema Lisse

    Google Scholar 

  12. Köhler H.-J. & Schulze R. (2000): Landslides Triggered in Clayey Soils -Geotechnical Measurements and Calculations. In: Proc. 8th IS Landslides, Bromhead E. et al. (eds.), Cardiff, 837-842, Thomas Telford London

    Google Scholar 

  13. Köhler H.-J., Schulze R., Asami K. (2002): Protection measures in order to increase safety of unstable clay slopes by unconventional pore pressure release techniques. In: Landslides -Proc. 1st European Conference on Landslides, Rybár et al. (eds.), Prague, 597-601, Balkema Lisse

    Google Scholar 

  14. Köhler H.-J. & Montenegro H. (2003): Investigations regarding soils below phreatic surface as unsaturated porous media. In: From Experimental Evidence towards Numerical Modelling of Unsaturated Soils, Weimar, Germany, T. Schanz (ed), 139-157, ISBN 3 540 21122 5, Springer Berlin

    Google Scholar 

  15. Montenegro H, Köhler H.-J., Holfelder T. (2003): Inspection of pressure propagation in the zone of gas entrapment below the capillary fringe. In: From Experimental Evidence towards Numerical Modelling of Unsaturated Soils, Weimar, Germany, T. Schanz (ed), 159-172, ISBN 3 540 21122 5, Springer Berlin

    Google Scholar 

  16. Paton J. & Semple N.G. (1961): Investigation of the Stability of an Earth Dam Subject to Rapid Drawdown including Details on Pore Pressures recorded during a Controlled Drawdown Test. In: Pore Pressure and Suction in Soils, 85-90, Butterworth London

    Google Scholar 

  17. Pinyol N., Alonso, E.E., Olivella S. (2008): Rapid drawdown in slopes and embankments. Water Resources Research, Vol. 44.

    Google Scholar 

  18. Plaxis (2014): Plaxis Scientific Manual by Brinkgreve R., Engin E., Swolfs W., Plaxis 2D finite element code

    Google Scholar 

  19. Schulz H. (1986): Kompressibilität und Porenwasserüberdruck -Bedeutung für Gewässersohlen (Compressibility and excess pore water pressure -implications for river beds). In: Mitteilungsblatt der BAW No. 58, 13–28

    Google Scholar 

  20. Schulz H. & Köhler H.-J. (1999): A soil mechanical design approach for permeable revetments on inland waterways. . In: Geotechnical Engineering for Transportation Infrastructure -Proc. 12th European Conference Soil Mechanics, Barends F.B.J. et al. (eds.), Amsterdam, Vol. 2, ISBN 90 5809 049 3, 835-843, Balkema Rotterdam

    Google Scholar 

  21. Schulze R. (2011): Pore water pressure effects in clay due to unloading -long term measurements, change of soil fabric and application. 8th IS on Field Measurements in GeoMechanics (FMGM), Berlin, download 2014-12-23: http://vzb.baw.de/publikationen/vzb_dokumente_oeffentlich/0/FMGM_2011_Berlin_Schulze_Pore-water-pressure_effects_in_clay.pdf

  22. Schulze R. & Köhler H.-J. (2003). Stabilisation of endangered clay slopes by unconventional pore pressure release technique. In: Proc. 6th IS on Field Measurements in GeoMechanics (FMGM), Oslo, 347-353, Balkema Lisse

    Google Scholar 

  23. Schwab R., Köhler H.-J. (2003). Behaviour of near saturated soils under cyclic wave loading. In: Deformation Characteristics of Geomaterials -Proc. 3rd IS, DiBenedetto H. et al. (eds.), Lyon, France, Vol. 1, 857–862, Balkema Lisse

    Google Scholar 

  24. Schwab R., Köhler H.-J., Schulze R. (2004): Pore water compressibility and soil behaviour -excavations, slopes and draining effects. In: Advances in Geotechnical Engineering: The Skempton Conference, Jardine et al. (eds), Vol. 2, ISBN 0 7277 3264 1, 1169-1182, Thomas Telford, London

    Google Scholar 

  25. Skempton A.W. (1954): The pore-pressure coefficients A and B. Géotechnique, Vol. 4(4), 143–147

    Article  Google Scholar 

  26. Stelzer O., Montenegro H., Odenwald B. (2014): Consolidation Analyses Considering Gas Entrapment below the Phreatic Surface. In: Numerical Methods in Geotechnical Engineering -Proc. 8th European Conference on Numerical Methods in Geotechnical Engineering NUMGE, Hicks et al. (eds.), Delft, Vol. 2, 1037-1042, ISBN 978 1 138 02688 9, Taylor & Francis, London

    Google Scholar 

  27. Terzaghi K. (1923): Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der hydrodynamischen Spannungserscheinungen. Akad. der Wissenschaften, mathem.-naturw. Klasse, Sitzungsbericht 7. Juni 1923, Abt. IIa, Bd. 132, 125–138, Wien

    Google Scholar 

  28. Terzaghi K. (1925): Erdbaumechanik. Franz Deuticke, Leipzig und Wien

    Google Scholar 

  29. Terzaghi K. (1943): Theoretical Soil Mechanics, John Wiley & Sons, New York

    Book  Google Scholar 

  30. Verruijt A. (2014): Theory and Problems of Poroelasticity, download 2014-12-23: http://geo.verruijt.net/software/PoroElasticity2014.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Roland Schulze Dipl.-Ing. or Oliver Stelzer Dipl.-Ing. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schulze, R., Stelzer, O. (2015). Soil modelling considering the influence of gas inclusions in pore water below the piezometric line - a short introduction. In: Schanz, T., Hettler, A. (eds) Aktuelle Forschung in der Bodenmechanik 2015. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-45991-1_7

Download citation

Publish with us

Policies and ethics