Skip to main content

Hydrogen Activation in Water by Organometallic Complexes

  • Chapter
Organometallics and Related Molecules for Energy Conversion

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

Hydrogen has found important applications as reducing agent for chemical transformations and is nowadays considered as one of the most promising energy vectors able to fuel devices to produce electricity on demand (direct hydrogen fuel cells). Crucial to its application is the understanding at the molecular level of how hydrogen interacts with (transition) metals which are commonly used as catalysts to lower the energy barrier to split the H2 molecule into its components and allow transfer and reactivity. In this chapter, selected examples of hydrogen activation by water-soluble organometallic complexes are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zuttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a future energy carrier. Wiley, Weinheim

    Book  Google Scholar 

  2. James BR (1973) Homogeneous hydrogenation. Wiley, New York

    Google Scholar 

  3. Calvin M (1938) Homogeneous catalytic hydrogenation. Trans Faraday Soc 34:1181–1191

    Article  Google Scholar 

  4. Hieber W, Leutert F (1931) Zur Kenntnis des koordinativ gebundenen Kohlenoxyds: Bildung von Eisencarbonylwasserstoff. Naturwissenschaften 19:360–361

    Article  Google Scholar 

  5. Green MLH, Pratt L, Wilkinson G (1958) Biscyclopentadienylrhenium hydride. J Chem Soc 3916–3922

    Google Scholar 

  6. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  7. Halpern J (1959) Homogeneous catalytic activation of molecular hydrogen by metal ions and complexes. J Phys Chem 63:398–403

    Article  Google Scholar 

  8. Halpern J (1959) The catalytic activation of hydrogen in homogeneous, heterogeneous, and biological systems. Adv Catal 11:301–370

    Google Scholar 

  9. Kubas GJ, Ryan RR, Swanson BJ, Vergamini PJ, Wasserman HJ (1984) Molecular hydrogen complexes of the transition metals. 4. Preparation and characterization of M(CO)3(PR3)2(η2-H2) (M = molybdenum, tungsten) and evidence for equilibrium dissociation of the H-H bond to give MH2(CO)3(PR3)2. J Am Chem Soc 108:7000–7009

    Article  Google Scholar 

  10. Kubas GJ (2014) Activation of dihydrogen and coordination of molecular H2 on transition metals. J Organomet Chem 751:33–49

    Article  Google Scholar 

  11. Kubas GJ (2009) Hydrogen activation on organometallic complexes and H2 production, utilization, and storage for future energy. J Organomet Chem 694:2648–2653

    Article  Google Scholar 

  12. Szymczak NK, Tyler DR (2008) Aspects of dihydrogen coordination chemistry relevant to reactivity in aqueous solution. Coord Chem Rev 252:212–230

    Article  Google Scholar 

  13. Jessop PG, Morris RH (1992) Reactions of transition metal dihydrogen complexes. Coord Chem Rev 121:155–284

    Article  Google Scholar 

  14. Kubas GJ (2005) Catalytic processes involving dihydrogen complexes and other sigma-bond complexes. Catal Lett 104:79–101

    Article  Google Scholar 

  15. Bianchini C, Peruzzini M (2001) Dihydrogen metal complexes in catalysis. In: Peruzzini M, Poli R (eds) Recent advances in hydride chemistry. Elsevier, Amsterdam, pp 271–297

    Chapter  Google Scholar 

  16. Vaska L, DiLuzio JW (1962) Activation of hydrogen by a transition metal complex at normal conditions leading to a stable molecular dihydride. J Am Chem Soc 84:679–680

    Article  Google Scholar 

  17. Osborn JA, Jardine FH, Wilkinson GJ (1966) The preparation and properties of tris(triphenylphosphine)halogenorhodium(I) and some reactions thereof including catalytic homogeneous hydrogenation of olefins and acetylenes and their derivatives. J Chem Soc A 1711–1732

    Google Scholar 

  18. Noyori R (2002) Asymmetric catalysis: science and opportunities (nobel lecture). Angew Chem Int Ed 41:2008–2022 and references therein

    Google Scholar 

  19. Noyori R, Koizumi M, Ishii D, Okhuma T (2001) Asymmetric hydrogenation via architectural and functional molecular engineering. Pure Appl Chem 73:227–232

    Article  Google Scholar 

  20. See for example: Clapham SE, Hadzovic A, Morris RH (2004) Mechanisms of the H2-hydrogenation and transfer hydrogenation of polar bonds catalyzed by ruthenium hydride complexes. Coord Chem Rev 248:2201–2237

    Google Scholar 

  21. Brothers PJ (1981) Heterolytic activation of hydrogen by transition metal complexes. Prog Inorg Chem 28:1–61

    Google Scholar 

  22. Morris RH (2001) Non-classical hydrogen bonding along the pathway to the heterolytic splitting of dihydrogen. In: Peruzzini M, Poli R (eds) Recent advances in hydride chemistry. Elsevier, Amsterdam, pp 1–38

    Chapter  Google Scholar 

  23. Kubas GJ (2004) Heterolytic splitting of H-H, Si-H, and other σ bonds on electrophilic metal centres. Adv Inorg Chem 56:127–178

    Article  Google Scholar 

  24. Rocchini E, Mezzetti A, Ruegger H, Burckhardt U, Gramlich V, Del Zotto A, Martinuzzi P, Rigo P (1997) Heterolytic H2 activation by dihydrogen complexes. Effects of the ligand X in [M(X)H2{Ph2P(CH2)3PPh2}2]n+ (M = Ru, Os; X = CO, Cl, H). Inorg Chem 36:711–720

    Article  Google Scholar 

  25. Zelonka RA, Baird MC (1972) Reactions of benzene complexes of ruthenium(II). J Organomet Chem 35:C43–C46

    Article  Google Scholar 

  26. Stebler-Röthlisberger M, Hummel W, Pittet PA, Bürgi HB, Ludi A, Merbach AE (1988) Triaqua(benzene)ruthenium(II) and triaqua(benzene)osmium(II): synthesis, molecular structure, and water-exchange kinetics. Inorg Chem 27:1358–1363

    Article  Google Scholar 

  27. Süss-Fink G (2014) Water-soluble arene ruthenium complexes: from serendipity to catalysis and drug design. J Organomet Chem 751:2–19

    Article  Google Scholar 

  28. Meister G, Rheinwald G, Stoeckli-Evans H, Süss-Fink G (1994) Hydrogen activation by arene ruthenium complexes in aqueous solution. Part 2. Build-up of cationic tri- and tetra-nuclear ruthenium clusters with hydrido ligands. J Chem Soc Dalton Trans 3215–3223

    Google Scholar 

  29. Süss-Fink G, Plasseraud L, Maisse-François A, Stoeckli-Evans H, Berke H, Fox T, Gautier R, Saillard J-Y (2000) The cluster dication [H6Ru4(C6H6)4]2+ revisited: the first cluster complex containing an intact dihydrogen ligand? J Organomet Chem 609:196–203

    Article  Google Scholar 

  30. Jahncke M, Neels A, Stoeckli-Evans H, Süss-Fink G (1998) Reactions of the cationic complex [(η6-C6Me6)2Ru2(μ2-H)3]+ with nitrogen-containing heterocycles in aqueous solution. J Organomet Chem 561:227–235

    Article  Google Scholar 

  31. Süss-Fink G, Meister G, Haak S, Rheinwald G, Stoeckli-Evans H (1997) Organometallic clusters and water: theme and variations. New J Chem 21:785–790

    Google Scholar 

  32. Süss-Fink G, Meister A, Meister G (1995) Clusters and water: build-up of multinuclear organometallic compounds in aqueous solution. Coord Chem Rev 143:97–111

    Article  Google Scholar 

  33. Aebischer N, Frey U, Merbach AE (1998) Formation and in situ characterization of the first dihydrogen aqua complex: [Ru(H2O)5(H2)]2+. Chem Commun 2303–2304

    Google Scholar 

  34. Maltby PA, Schlaf M, Steinback M, Lough AJ, Morris RH, Klooster WT, Kloetze TF, Srivastava RC (1996) Dihydrogen with frequency of motion near the 1H larmor frequency. Solid-state structures and solution NMR spectroscopy of osmium complexes trans-[Os(H · ·H)X(PPh2CH2CH2PPh2)2]+ (X = Cl, Br). J Am Chem Soc 118:5396–5407

    Article  Google Scholar 

  35. Grundler PV, Yazyev OV, Aebischer N, Helm L, Laurenczy G, Merbach AE (2006) Kinetic studies on the first dihydrogen aquacomplex, [Ru(H2)(H2O)5]2+: formation under H2 pressure and catalytic H/D isotope exchange in water. Inorg Chim Acta 359:1795–1806

    Article  Google Scholar 

  36. Aebischer N, Laurenczy G, Ludi A, Merbach AE (1993) Monocomplex formation reactions of hexaaquaruthenium(II): a mechanistic study. Inorg Chem 32:2810–2814

    Article  Google Scholar 

  37. Szymczak NK, Zakharov LN, Tyler DR (2006) Solution chemistry of a water-soluble η2-H2 ruthenium complex: evidence for coordinated H2 acting as a hydrogen bond donor. J Am Chem Soc 128:15830–15835

    Article  Google Scholar 

  38. Szymczak NK, Braden DA, Crossland JC, Turov Y, Zakharov LN, Tyler DR (2009) Aqueous coordination chemistry of H2: why is coordinated H2 inert to substitution by water in trans-Ru(P2)2(H2)H+-type complexes (P2 = a chelating phosphine)? Inorg Chem 48:2976–2984

    Article  Google Scholar 

  39. Bahrmann H, Bogdanovic S, van Leeuwen PWNM (2004) Higher alkenes. In: Cornils B, Herrmann WA (eds) Aqueous-phase organometallic catalysis. Wiley, Weinheim, pp 391–409

    Google Scholar 

  40. Liu S, Xiao J (2007) Toward green catalytic synthesis – transition metal-catalyzed reactions in non-conventional media. J Mol Catal A Chem 270:1–43

    Article  Google Scholar 

  41. Kalck P, Dessoudeix M (1999) Inter-facial catalysis using various water-compatible ligands in supramolecular systems. Coord Chem Rev 192:1185–1198

    Article  Google Scholar 

  42. Gimenez-Pedros M, Aghmiz A, Claver C, Masdeu-Bultò AM, Sinou D (2003) Micellar effect in hydroformylation of high olefin catalysed by water-soluble rhodium complexes associated with sulfonated diphosphines. J Mol Catal A Chem 200:157–163

    Article  Google Scholar 

  43. Kohlpaintner CW, Fischer RW, Cornils B (2001) Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Appl Catal A Gen 221:219–225

    Article  Google Scholar 

  44. Baricelli PJ, Lujano E, Rodriguez M, Fuentes A, Sanchez-Delgado RA (2004) Synthesis and characterization of Ru(H)2(CO)(TPPMS)3 and catalytic properties in the aqueous-biphasic hydroformylation of olefins. Appl Catal A Gen 263:187–191

    Article  Google Scholar 

  45. Sullivan JT, Sadula J, Hanson BE, Rosso RJ (2004) The hydroformylation of 4-penten-1-ol and 3-buten-1-ol in water with HRh(CO)(TPPTS)3 and the effects of solution ionic strength. J Mol Catal A Chem 214:213–218

    Article  Google Scholar 

  46. Melean LG, Rodriguez M, Romero M, Alvarado ML, Rosales M, Baricelli PJ (2011) Biphasic hydroformylation of substituted allylbenzenes with water-soluble rhodium or ruthenium complexes. Appl Catal A Gen 394:117–123

    Article  Google Scholar 

  47. Joó F, Kovacs J, Benyei AC, Kathó A (1998) Solution pH: a selectivity switch in aqueous organometallic catalysis – hydrogenation of unsaturated aldehydes catalyzed by sulfonatophenylphosphane-Ru complexes. Angew Chem Int Ed 37:969–970

    Article  Google Scholar 

  48. Joó F, Kovacs J, Benyei AC, Kathó A (1998) The effects of pH on the molecular distribution of water soluble ruthenium(II) hydrides and its consequences on the selectivity of the catalytic hydrogenation of unsaturated aldehydes. Catal Today 42:441–448

    Article  Google Scholar 

  49. Papp G, Elek J, Nadasdi L, Laurenczy G, Joó F (2003) Dramatic pressure effects on the selectivity of the aqueous/organic biphasic hydrogenation of trans-cinnamaldehyde catalyzed by water-soluble Ru(II)-tertiary phosphane complexes. Adv Synth Catal 345:172–174

    Article  Google Scholar 

  50. Rossin A, Kovacs G, Ujaque G, Lledos A, Joó F (2006) The active role of the water solvent in the regioselective C = O hydrogenation of unsaturated aldehydes by [RuH2(mtppms)x] in basic media. Organometallics 25:5010–5023

    Article  Google Scholar 

  51. Papp G, Horvath H, Laurenczy G, Szatmari I, Katho A, Joó F (2013) Classical and non-classical phosphine-Ru(II)-hydrides in aqueous solutions: many, various, and useful. Dalton Trans 42:521–529

    Article  Google Scholar 

  52. Joó F (2008) Breakthroughs in hydrogen storage – formic acid as a sustainable storage material for hydrogen. ChemSusChem 1:805–808

    Article  Google Scholar 

  53. Grasemann M, Laurenczy G (2012) Formic acid as a hydrogen source – recent developments and future trends. Energy Environ Sci 5:8171–8181

    Article  Google Scholar 

  54. Fellay C, Dyson PJ, Laurenczy G (2008) A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew Chem Int Ed 47:3966–3968

    Article  Google Scholar 

  55. Fellay C, Yan N, Dyson PJ, Laurenczy G (2009) Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Chem Eur J 15:3752–3760

    Article  Google Scholar 

  56. Gan W, Fellay C, Dyson PJ, Laurenczy G (2010) Influence of water-soluble sulfonated phosphine ligands on ruthenium catalyzed generation of hydrogen from formic acid. J Coord Chem 63:2685–2694

    Article  Google Scholar 

  57. Papp G, Csorba J, Laurenczy G, Joó F (2011) A charge/discharge device for chemical hydrogen storage and generation. Angew Chem Int Ed 50:10433–10435

    Article  Google Scholar 

  58. Joó F, Laurenczy G, Nadasdi L, Elek J (1999) Homogeneous hydrogenation of aqueous hydrogen carbonate to formate under exceedingly mild conditions – a novel possibility of carbon dioxide activation. Chem Commun 971–972 and references therein

    Google Scholar 

  59. Kovacs G, Schubert G, Joó F, Papai I (2006) Theoretical investigation of catalytic HCO3 − hydrogenation in aqueous solutions. Catal Today 115:53–60

    Article  Google Scholar 

  60. Phillips AD, Gonsalvi L, Romerosa A, Vizza F, Peruzzini M (2004) Coordination chemistry of 1,3,5-Triaza-7-phosphaadamantane (PTA). Transition metal complexes and related catalytic, medicinal and photo-luminescent applications. Coord Chem Rev 248:955–993

    Article  Google Scholar 

  61. Bravo J, Bolaño S, Gonsalvi L, Peruzzini M (2010) Coordination chemistry of 1,3,5-Triaza-7-phosphaadamantane (PTA) and derivatives. Part II. The quest for tailored ligands, complexes and related applications. Coord Chem Rev 248:555–607

    Article  Google Scholar 

  62. Gonsalvi L, Guerriero A, Hapiot F, Krogstad DA, Monflier E, Reginato G, Peruzzini M (2013) Lower and upper rim-modified PTA derivatives: coordination chemistry and applications in catalytic reactions in water. Pure Appl Chem 85:385–396

    Google Scholar 

  63. Laurenczy G, Joó F, Nadasdi L (2000) Formation and characterization of water-soluble hydrido-ruthenium(II) complexes of 1,3,5-triaza-7-phosphaadamantane and their catalytic activity in hydrogenation of CO2 and HCO3 − in aqueous solution. Inorg Chem 39:5083–5088

    Article  Google Scholar 

  64. Akbayeva DN, Gonsalvi L, Oberhauser W, Peruzzini M, Vizza F, Brüggeller P, Romerosa A, Sava G, Bergamo A (2003) Synthesis, catalytic properties and biological activity of new water soluble ruthenium cyclopentadienyl PTA complexes [(C5R5)Ru(PTA)2Cl] (R = H, Me; PTA = 1,3,5-triaza-7-phosphaadamantane). Chem Commun 264–265

    Google Scholar 

  65. Bosquain SS, Dorcier A, Dyson PJ, Erlandsson M, Gonsalvi L, Peruzzini M, Laurenczy G (2007) Aqueous phase carbon dioxide and bicarbonate hydrogenation catalysed by cyclopentadienyl ruthenium complexes. Appl Organomet Chem 21:947–951

    Article  Google Scholar 

  66. Frost BJ, Mebi CA (2004) Aqueous organometallic chemistry: synthesis, structure, and reactivity of the water-soluble metal hydride, CpRu(PTA)2H. Organometallics 23:5317–5323

    Article  Google Scholar 

  67. Rossin A, Gonsalvi L, Phillips AD, Maresca O, Lledos A, Peruzzini M (2007) Water-assisted H-H bond splitting mediated by [CpRu(PTA)2Cl] (PTA = 1,3,5-triaza-7-phosphaadamantane). A DFT Anal Organomet 26:3289–3296

    Article  Google Scholar 

  68. Kovacs G, Rossin A, Gonsalvi L, Lledos A, Peruzzini M (2010) Comparative DFT analysis of ligand and solvent effects on the mechanism of H2 activation in water mediated by half-sandwich complexes [Cp’Ru(PTA)2Cl] (Cp’ = C5H5, C5Me5; PTA = 1,3,5-triaza-7-phosphaadamantane). Organometallics 29:5121–5131

    Article  Google Scholar 

  69. Zhao G, Joó F (2011) Free formic acid by hydrogenation of carbon dioxide in sodium formate solutions. Catal Commun 14:74–76

    Article  Google Scholar 

  70. Kovacs G, Nadasdi L, Laurenczy G, Joó F (2003) Aqueous organometallic catalysis. Isotope exchange reactions in H2–D2O and D2–H2O systems catalyzed by water-soluble Rh- and Ru-phosphine complexes. Green Chem 5:213–217

    Article  Google Scholar 

  71. Kovacs G, Schubert G, Joó F, Papai I (2005) Theoretical mechanistic study of rhodium(I) phosphine-catalyzed H/D exchange processes in aqueous solutions. Organometallics 24:3059–3065 and references therein

    Google Scholar 

  72. Joó F, Csiba P, Benyei A (1993) Effect of water on the mechanism of hydrogenations catalysed by rhodium phosphine complexes. J Chem Soc Chem Commun 1602–1604

    Google Scholar 

  73. Darensbourg DJ, Stafford NW, Joó F, Reibenspies JH (1995) Water-soluble organometallic compounds. 5. The regio-selective catalytic hydrogenation of unsaturated aldehydes to saturated aldehydes in an aqueous two-phase solvent system using 1,3,5-triaza-7-phosphaadamantane complexes of rhodium. J Organomet Chem 488:99–108

    Article  Google Scholar 

  74. Joó F, Nadasdi L, Benyei AC, Darensbourg DJ (1996) Aqueous organometallic chemistry: the mechanism of catalytic hydrogenations with chlorotris(1,3,5-triaza-7-phosphaadamantane) rhodium(I). J Organomet Chem 512:45–50

    Article  Google Scholar 

  75. Kovacs J, Todd TD, Reibenspies JH, Joó F, Darensbourg DJ (2000) Water-soluble organometallic compounds. 9. Catalytic hydrogenation and selective isomerization of olefins by water-soluble analogues of Vaska’s complex. Organometallics 19:3963–3969

    Article  Google Scholar 

  76. Erlandsson M, Landaeta VR, Gonsalvi L, Peruzzini M, Phillips AD, Dyson PJ, Laurenczy G (2008) Methylcyclopentadienyl iridium PTA complexes and their application in catalytic water phase carbon dioxide hydrogenation (PTA = 1,3,5-triaza-7-phosphaadamantane). Eur J Inorg Chem 620–627

    Google Scholar 

  77. Gilbertson JD, Szymczak NK, Tyler DR (2004) H2 activation in aqueous solution: formation of trans-[Fe(DMeOPrPE)2H(H2)]+ via the heterolysis of H2 in water. Inorg Chem 43:3341–3343

    Article  Google Scholar 

  78. Gilbertson JD, Szymczak NK, Crossland JL, Miller WK, Lyon DK, Foxman BM, Davis J, Tyler DR (2007) Coordination chemistry of H2 and N2 in aqueous solution. Reactivity and mechanistic studies using trans-FeII(P2)2X2-type complexes (P2 = a chelating, water-solubilizing phosphine). Inorg Chem 46:1205–1214

    Article  Google Scholar 

  79. Voronova K, Purgel M, Udvardy A, Benyei AC, Kathó A, Joó F (2013) Hydrogenation and redox isomerization of allylic alcohols catalyzed by a new water-soluble Pd-tetrahydrosalen complex. Organometallics 32:4391–4401

    Article  Google Scholar 

Download references

Acknowledgements

Financial contributions by CNR and ECRF projects EFOR and Firenze Hydrolab2 are gratefully acknowledged. Italian Ministry for Education and Research MIUR is also thanked for supporting this research through projects PRIN 2009 and Premiale 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Gonsalvi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gonsalvi, L., Bertini, F., Guerriero, A., Mellone, I. (2015). Hydrogen Activation in Water by Organometallic Complexes. In: Wong, WY. (eds) Organometallics and Related Molecules for Energy Conversion. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46054-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46054-2_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46053-5

  • Online ISBN: 978-3-662-46054-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics