Skip to main content

Composite Extrusion

  • Chapter
  • First Online:
60 Excellent Inventions in Metal Forming

Abstract

The composite extrusion process allows the continuous embedding of reinforcing or functional elements into a metallic matrix material. Thereby, the economic advantages of the conventional direct extrusion can be combined with the advantages of a multi-material profile design. By using lightweight materials like aluminum or magnesium as a matrix, the profiles possess a low density associated with good mechanical properties. To improve the tensile strength and the stiffness of the profiles, high strength materials, such as high strength steel or ceramic oxide fibers can be integrated during the process. Furthermore composite extrusion allows the embedding of functional elements like isolated electric conductors, which allows a signal or data transmission through the profile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kleiner M., Geiger M., Klaus A., 2003, Manufacturing of lightweight components by metal forming. CIRP Annals – Manufacturing Technology 52 (2), 521–542.

    Article  Google Scholar 

  2. Foydl A., Haase M., Ben Khalifa N., Tekkaya A.E., 2011, Co-extrusion of Discontinuously, Non-centric Steel-reinforced Aluminum, AIP Conference Proceedings 1353 (1), 443.

    Article  Google Scholar 

  3. Güzel A., Jäger A., Ben Khalifa N., Tekkaya A. E., 2011, Influence of initial billet geometry on plastic flow during composite rod extrusion, Proceedings of the International Conference on Extrusion and Benchmark, Bologna, Italy.

    Google Scholar 

  4. Lloyd D. J., 1994, Particle reinforced aluminium and magnesium matrix composites. International Materials Reviews, 39, 1–23.

    Article  Google Scholar 

  5. Schomäker M., 2007, Verbundstrangpressen von Aluminiumprofilen mit endlosen metallischen Verstärkungselementen, Dissertation, Universität Dortmund.

    Google Scholar 

  6. Schikorra, M., 2006, Modellierung und simulationsgestützte Analyse des Verbundstrangpressens, Dissertation, Universität Dortmund.

    Google Scholar 

  7. Kloppenborg T., 2012, Analyse- und Optimierungsmethoden für das Verbundstrangpressen, Dissertation, Technische Universität Dortmund.

    Google Scholar 

  8. Schwane M., Citrea T., Dahnke C., Haase M., Ben Khalifa N., Tekkaya A.E., 2014, Simulation of Composite Hot Extrusion with High Reinforcing Volumes, 11th International Conference on Technology of Plasticity, ICTP 2014, 81, 1265–1270.

    Google Scholar 

  9. Merzkirch M., Weidenmann K. A., Schulze V., 2011, Werkstoffkundliche Charakterisierung verbundstranggepresster Leichtmetallmatrix-Verbundwerkstoffe. In: Fortschritt-Berichte VDI, Tekkaya, A. E., Baier, H., Biermann, Fleischer, J., Schulze, V., Zäh, M. F., Pietzka, D. (Hrsg.). Integration von Umformen, Trennen und Fügen für die flexible Fertigung von leichten Tragwerkstrukturen. Reihe 2. Nr. 678. VDI Verlag, Düsseldorf. 49–72.

    Google Scholar 

  10. Weidenmann K. A., Hammers T., Merzkirch M., Kerscher E., 2009, Charakterisierung des mechanischen Verhaltens verbundstranggepresster Leichtbauprofile unterschlagartiger Beanspruchung. In: Verbundwerkstoffe, 17. Symposium Verbundwerkstoffe und Werkstoffverbunde. Krenkel W. (Hrsg.). Wiley-VCH Verlag, Weinheim. 168–173.

    Google Scholar 

  11. Pietzka D., 2013, Erweiterung des Verbundstrangpressens zu höheren Verstärkungsanteilen und funktionalen Verbunden, Dissertation, Technische Universität Dortmund.

    Google Scholar 

  12. Dahnke C., Pietzka D., Haase M., Tekkaya A.E., 2014, Extending the Flexibility in the Composite Extrusion Process, Proceedings of the International Conference on Manufacturing of Lightweight Components – ManuLight 2014, 18, 33–38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Dahnke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dahnke, C. et al. (2015). Composite Extrusion. In: Tekkaya, A., Homberg, W., Brosius, A. (eds) 60 Excellent Inventions in Metal Forming. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46312-3_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46312-3_42

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46311-6

  • Online ISBN: 978-3-662-46312-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics