Skip to main content

Photoelectrochemical Conversion Processes

  • Chapter
Springer Handbook of Electrochemical Energy

Part of the book series: Springer Handbooks ((SHB))

  • 6403 Accesses

Abstract

Society’s electrical needs are largely continuous. However, clouds and darkness dictate that photovoltaic solar cells have an intermittent output. A photoelectrochemical solar cell (GlossaryTerm

PEC

) can generate not only electrical but also electrochemical energy, and provide the basis for a system with an energy storage component. Sufficiently energetic insolation incident on semiconductors can drive electrochemical oxidation/reduction and generate chemical, electrical or electrochemical energy. Aspects include efficient dye sensitized or direct solar to electrical energy conversion, solar electrochemical synthesis (electrolysis), including water splitting to form hydrogen, environmental cleanup and solar energy storage cells. The PEC utilizes light to carry out an electrochemical reaction, converting light to both chemical and electrical energy. This fundamental difference of the photovoltaic (GlossaryTerm

PV

) solar cell’s solid/solid interface, and the PEC’s solid/liquid interface has several ramifications in cell function and application. Energetic constraints imposed by single bandgap semiconductors have limited the demonstrated values of photoelectrochemical solar to electrical energy conversion efficiency to 16 %, and multiple bandgap cells can lead to significantly higher conversion efficiencies.

Photoelectrochemical systems may facilitate not only solar to electrical energy conversion , but have also led to investigations in solar photoelectrochemical production of fuels and photoelectrochemical detoxification of pollutants, and efficient solar thermal electrochemical production (GlossaryTerm

STEP

) of metals, fuels, bleach and carbon capture [24.1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 269.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 349.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CE:

counter electrode

CPV:

concentrator photovoltaic cell

IR:

infrared

MBPEC:

multiple bandgap photoelectrochemical solar cell

PEC:

photoelectrochemical

PV:

photovoltaic

SPE:

semiconductor photoelectrode

STEP:

solar thermal electrochemical production

UV:

ultraviolet

References

  1. S. Licht, B. Cui, B. Wang, F.-F. Li, J. Lau, S. Liu: Ammonia synthesis by N2 and steam electrolysis in molten hydroxide suspensions of nanoscale Fe2O3, Science 345(6197), 637–640 (2014)

    Article  Google Scholar 

  2. E. Becquerel: Memoires sur les effets electriques produits sous l’influence des rayons, C.R. 9, 561–567 (1839)

    Google Scholar 

  3. H. Gerischer: Semiconductor electrode reactions, Adv. Electrochem. Electrochem. Eng. 1, 139 (1961)

    Google Scholar 

  4. H. Gerischer: Semiconductor electrochemistry, Phys. Chem. 9, 463–542 (1970)

    Google Scholar 

  5. A. Fujishima, K. Honda: Electrochemical photolysis of water at a semiconductor electrode, Nature 238, 37–38 (1972)

    Article  Google Scholar 

  6. T. Rao, D.A. Tryk, A. Fujishima: Applications of TiO2 photocatalysis. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 6.1

    Google Scholar 

  7. G. Hodes, J. Manassen, D. Cahen: Photoelectrochemical energy conversion and storage using polycrystalline chalcogenide electrodes, Nature 261, 402–404 (1976)

    Article  Google Scholar 

  8. A.B. Ellis, S.W. Kaiser, M.S. Wrighton: Visible light to electrical energy conversion. Stable cadmium sulfide and cadmium selenide photoelectrodes in aqueous electrolytes, J. Am. Chem. Soc. 98, 1635–1637 (1976)

    Article  Google Scholar 

  9. B. Miller, A. Heller: Semiconductor liquid junction solar cells based on anodic sulphide films, Nature 262, 680–681 (1976)

    Article  Google Scholar 

  10. A.J. Nozik: Photoelectrochemistry: Applications to solar energy conversion, Annu. Rev. Phys. Chem. 29, 18–222 (1978)

    Article  Google Scholar 

  11. M.A. Butler, D.S. Ginley: Review principles of photoelectrochemical, solar energy conversion, J. Mater. Sci. 15, 1–91 (1980)

    Article  Google Scholar 

  12. R. Memming: Improvements in solar energy conversion. In: Photochemical Conversion and Storage of Solar Energy, ed. by E. Pelizzetti, M. Schiavello (Kluwer, Dordrecht 1991) pp. 139–212

    Google Scholar 

  13. S. Licht (Ed.): Semiconductor Electrodes and Photoelectrochemistry (Wiley-VCH, Weinheim 2002)

    Google Scholar 

  14. M. Archer, A. Nozik (Eds.): Nanostructured and Photoelectrochemical Systems for Solar Photon Conversion, Vol. 3 (World Scientific, Singapore 2008)

    Google Scholar 

  15. K. Rajeshwar, S. Licht, R. McConnell (Eds.): The Solar Generation of Hydrogen: Towards a Renewable Energy Future (Springer, New York 2008)

    Google Scholar 

  16. L. Vayssieres: Solar hydrogen and nanotechnology, SPIE Proc. 6340, 641–664 (2010)

    Google Scholar 

  17. S. Licht, G. Hodes, R. Tenne, J. Manassen: A light variation insensitive high efficiency solar cell, Nature 326, 863–864 (1987)

    Article  Google Scholar 

  18. R. Tenne, G. Hodes: Improved efficiency of CdSe photoanodes by photoelectrochemical etching, Appl. Phys. Lett. 37, 428–430 (1980)

    Article  Google Scholar 

  19. S. Licht: A description of energy conversion in photoelectrochemical solar cells, Nature 330, 148–151 (1987)

    Article  Google Scholar 

  20. S. Licht, D. Peramunage: Efficient photoelectrochemical solar cells from electrolyte modification, Nature 345, 330–333 (1990)

    Article  Google Scholar 

  21. S. Licht: Multiple bandgap semiconductorelectrolyte solar energy conversion, J. Phys. Chem. B 105, 6281–6294 (2001)

    Article  Google Scholar 

  22. H. Tributsch: Reaction of excited chlorophyll molecules at electrodes and in photosynthesis, Photochem. Photobiol. 16(4), 261–269 (1972)

    Article  Google Scholar 

  23. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya: Dye sensitised zinc oxide: Aqueous electrolyte: Platinum photocell, Nature 261, 402–403 (1976)

    Article  Google Scholar 

  24. B. O’Regan, M. Grätzel: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353, 737–740 (1991)

    Article  Google Scholar 

  25. D. Wei: Dye sensitized solar cells, Int. J. Mol. Sci. 11, 1103–1113 (2010)

    Article  Google Scholar 

  26. S. Licht: Efficient solar generation of hydrogen fuel – A fundamental analysis, Electrochem. Commun. 4, 789–794 (2002)

    Google Scholar 

  27. S. Licht: Electrochemical potential tuned solar water splitting, Chem. Commun. 2006, 3006–3007 (2003)

    Article  Google Scholar 

  28. S. Licht: STEP (solar thermal electrochemical photo) generation of energetic molecules: A solar chemical process to end anthropogenic global warming, J. Phys. Chem. C 113, 16283–16292 (2009)

    Article  Google Scholar 

  29. S. Licht: Optimizing photoelectrochemical solar energy conversion: Multiple bandgap and solution phase phenomenon. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 4.4

    Google Scholar 

  30. S. Licht, D. Peramunage: Rational electrolyte modification of n-CdSe/([KFe(CN)6]3-/2-) photoelectrochemistry, J. Electrochem. Soc. 139, L23–L26 (1992)

    Article  Google Scholar 

  31. S. Licht, B. Wang, T. Soga, M. Umeno: Light invariant, efficient, multiple bandgap AlGaAs/Si/metal hydride solar cell, Appl. Phys. Lett. 74, 4055–4057 (1999)

    Article  Google Scholar 

  32. B. Wang, S. Licht, T. Soga, M. Umeno: Stable cycling behavior of the light invariant AlGaAs/Si/metal hydride solar cell, Sol. Energy Mater. Sol. Cells 64, 311–320 (2000)

    Article  Google Scholar 

  33. S. Licht, G. Hodes: Photoelectrochemical storage cells. In: Nanostructured and Photochemical Systems for Solar Photon Conversion, Vol. 3, ed. by M. Archer, A. Nozik (World Scientific, Singapore 2008), Chap. 10

    Google Scholar 

  34. H. Snaith, A. Moule, C. Klein, K. Meerholz, R.H. Friend, M. Grätzel: Efficiency enhancements in solid-state hybrid solar cells via reduced charge recombination and increased light capture, Nano Lett. 7, 3372–3376 (2007)

    Article  Google Scholar 

  35. M.K. Naseeruddin, M. Grätzel: Dye-sensitized regenerative solar cells. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.2

    Google Scholar 

  36. J. Nelson: Charge transport in dye-sensitized systems. In: Semiconductor Electrodes and Photoelectrochemistry, ed. by S. Licht (Wiley-VCH, Weinheim 2002), Chap. 5.3

    Google Scholar 

  37. K. Uzaki, T. Nishimura, J. Usagawa, S. Hayase, M. Kono, Y. Yamaguchi: Dye-sensitized solar cells consisting of 3D-electrodes – A review: Aiming at high efficiency from the view point of light harvesting and charge collection, J. Solar Energy Eng.-Trans. ASME 132, 021204 (2010)

    Article  Google Scholar 

  38. J.H. Wu, Z. Lan, S.C. Hao, P. Li, J. Lin, M. Huang, L. Fang, Y. Huang: Progress on the electrolytes for dye-sensitized solar cells, Pure Appl. Chem. 80, 2241–2258 (2008)

    Google Scholar 

  39. T.W. Hamann, R.A. Jensen, A.B.F. Martinson, H. Van Ryswykac, J.T. Hupp: Advancing beyond current generation dye-sensitized solar cells, Energy Environ. Sci. 1, 66–78 (2008)

    Article  Google Scholar 

  40. B. Miller, S. Licht, M.E. Orazem, P.C. Searson: Photoelectrochemical systems, Crit. Rev. Surf. Chem. 3, 29 (1994)

    Google Scholar 

  41. C.H. Henry: Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells, J. Appl. Phys. 51, 4494–4500 (1980)

    Article  Google Scholar 

  42. D.J. Friedman, S.R. Kurtz, K. Bertness, A.E. Kibbler, C. Kramer, J.M. Olsen, D.L. King, B.R. Hansen, J.K. Snyder: 30.2% efficient GaInP/GaAs monolithic two-terminal tandem concentrator cell, Progr. Photovolt. 3, 47–50 (1995)

    Article  Google Scholar 

  43. J.P. Benner, J.M. Olson, T.J. Coutts: Recent advances in high-efficiency solar cells, Adv. Solar Energy 7, 125–165 (1992)

    Google Scholar 

  44. M.A. Green, K. Emery, K. Bucher, D.L. King, S. Igari: Solar cell efficiency tables (version 8), Progr. Photovolt. 4, 321–325 (1996)

    Article  Google Scholar 

  45. T. Soga, T. Kato, M. Yang, M. Umeno, T. Jimbo: High efficiency AIGaAs/Si monolithic tandem solar cell grown by metalorganic chemical vapor deposition, J. Appl. Phys. 78, 4196–4199 (1995)

    Article  Google Scholar 

  46. R.R. King, D.C. Law, K.M. Edmondson, C.M. Fetzer, G.S. Kinsey, H. Yoon, R.A. Sherif, N.H. Karam: 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells, Appl. Phys. Lett. 90, 183516–183518 (2007)

    Article  Google Scholar 

  47. N. Alonso-Vante, H. Colell, U. Stimming, H. Tributsch: Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes, J. Phys. Chem. 97, 7381–7384 (1993)

    Article  Google Scholar 

  48. S. Licht: Efficient solar-driven synthesis, carbon capture, and desalinization, STEP: Solar thermal electrochemical production of fuels, metals, bleach, Adv. Mater. 47, 5592–5612 (2011)

    Article  Google Scholar 

  49. S. Licht, H. Wu, C. Hettige, B. Wang, J. Lau, J. Asercion, J. Stuart: STEP cement: Solar thermal electrochemical production of CaO without CO2 emission, Chem. Commun. 48, 6019–6602 (2012)

    Article  Google Scholar 

  50. B. Cui, S. Licht: Critical STEP advances for sustainable iron production, Green Chem. 113, 881–884 (2013)

    Article  Google Scholar 

  51. S. Licht: Solar water splitting to generate hydrogen fuel: Photothermal electrochemical analysis, J. Phys. Chem. B 107(18), 4253–4260 (2003)

    Article  Google Scholar 

  52. J. Ren, F.-F. Li, J. Lau, L. Gonzalez-Urbina, S. Licht: One-pot synthesis of carbon nanofibers from CO2, Nano Lett. 15, 6142–6148 (2015)

    Article  Google Scholar 

  53. F.-F. Li, S. Liu, B. Cui, J. Lau, J. Stuart, S. Licht: A one-pot synthesis of hydrogen and carbon fuels from water and carbon dioxide, Adv. Energy Mat. 7(7), 1401791–1401791 (2015)

    Article  Google Scholar 

  54. F.-F. Li, J. Lau, S. Licht: Sungas instead of syngas: Efficient co-production of CO and H2 from a single beam of sunlight, Adv. Sci. (2015), doi:10.1002/advs.201500260

  55. J. Ren, J. Lau, M. Lefler, S. Licht: The minimum electrolytic energy needed to convert carbon dioxide by electrolysis in carbonate melts, J. Phys. Chem. C 119, 23342–23349 (2016)

    Article  Google Scholar 

  56. Y. Zhu, H. Wang, B. Wang, X. Liu, H. Wu, S. Licht: Solar thermoelectric field photocatlysis for efficient organic synthesis exemplified by toluene tobBenzoic acid, Appl. Cat. B 193, 151–159 (2016)

    Article  Google Scholar 

  57. S. Licht, A. Douglas, J. Ren, R. Carter, M.M. Lefler, C.L. Pint: Carbon nanotubes produced from ambient carbon dioxide for environmentally sustainable lithium-ion and sodium-ion battery anodes, ACS Cent. Sci. 2, 162–168 (2016)

    Article  Google Scholar 

  58. S. Licht, B. Wang, S. Mukerji, T. Soga, M. Umeno, H. Tributsch: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting, Int. J. Hydrogen Energy 280, 425–659 (1998)

    Google Scholar 

  59. S. Licht, O. Chitayat, H. Bergmann, A. Dick, H. Ayub, S. Ghosh: Efficient STEP (solar thermal electrochemical photo) production of hydrogen – An economic assessment, Int. J. Hydrogen Energy 35, 10867–10882 (2010)

    Article  Google Scholar 

  60. W.C. Butterman, W.E. Brooks, R.G. Reese: Cesium, US Publication Open-File Report, Vol. 2004–1432 (US Geological Service, Washington 2004), http://pubs.usgs.gov/of/2004/1432/2004-1432.pdf

    Google Scholar 

  61. J. Ng, X. Zhang, T. Zhang, J. Pan, A. Du Jian-Hong, D.D. Sun: Construction of self-organized free-standing TiO2 nanotube arrays for effective disinfection of drinking water, J. Chem. Technol. Biotechnol. 85(8), 1061–1066 (2010)

    Article  Google Scholar 

  62. S. Licht, F. Forouzan: Solution modified n-GaAs/Aqueous polyselenide photoelectrochemistry, J. Electrochem. Soc. 142, 1539–1545 (1995)

    Article  Google Scholar 

  63. C.P. Rhodes, A. Cisar, H. Lee, Y. Fu, A. Anderson, A. Gonzales-Martin: Book of Abstracts, 215-th Electrochem. Soc. Meet., San Francisco (2008), abstract #398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Licht, S. (2017). Photoelectrochemical Conversion Processes. In: Breitkopf, C., Swider-Lyons, K. (eds) Springer Handbook of Electrochemical Energy. Springer Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-46657-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-46657-5_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-46656-8

  • Online ISBN: 978-3-662-46657-5

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics