Skip to main content

GeoVisual Analytics

  • Chapter
  • First Online:
Geoinformatik

Part of the book series: Springer Reference Naturwissenschaften ((SRN))

  • 3514 Accesses

Zusammenfassung

Visual Analytics hat das Ziel, leistungsfähige Werkzeuge für die Analyse und Interpretation von Daten bereitzustellen. Die Werkzeuge sollen die Nutzer dabei unterstützen, Daten besser zu verstehen und neue Erkenntnisse aus den Daten zu gewinnen. Visual Analytics Werkzeuge verwenden Methoden der interaktiven Visualisierung und der automatisierten Datenanalyse. Sie nutzen damit die Fähigkeit des Menschen, intuitiv und schnell visuelle Informationen zu erfassen, sowie das Potential des Computers, komplexe Datenanalysen durchzuführen und interaktive Visualisierung zu ermöglichen. Das Forschungsfeld GeoVisual Analytics untersucht, wie die allgemeinen Konzepte von Visual Analytics für die Analyse und Interpretation raumzeitlicher Daten genutzt werden können.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.geovista.psu.edu/software/.

  2. 2.

    http://www.iais.fraunhofer.de/index.php?id=3091&L=0.

Literatur

  1. Tukey, J.W.: Exploratory data analysis. Addison-Wesley, Reading (1977)

    Google Scholar 

  2. Kosslyn, S.M.: Image and mind. Harvard University Press, Cambridge (1980)

    Google Scholar 

  3. Rockle, A.: Image and reality. In: Rocke, A.J. (Hrsg.) Kekulé, Kopp, The Scientific Imagination, S. xxvi + 375 ff. University of Chicago Press, Chicago (2010)

    Chapter  Google Scholar 

  4. Kaptelinin, V.: Computer-mediated activity: functional organs in social and developmental contexts. In: Nardi, B.A. (Hrsg.) Context and Conciousness: Activity Theory and Human-Computer Interaction, S. 46–68. MIT, Cambridge (1996)

    Google Scholar 

  5. Kaptelinin, V.: Activity theory: implications for human-computer interaction. In: Nardi, B.A. (Hrsg.) Context and Conciousness: Activity Theory and Human-Computer Interaction, S. 103–116. MIT, Cambridge (1996)

    Google Scholar 

  6. Norman, D.A.: Things that make us smart: Defending human attributes in the age of the machine. Perseus Books/Basic Books, Reading (1993)

    Google Scholar 

  7. Card, S.K., Mackinlay, J.K., Shneiderman, B.: Readings in information visualization: Using vision to think. Morgan Kaufmann, San Diego (1999)

    Google Scholar 

  8. Johnson-Laird, P.: Mental models. Harvard University Press, Cambridge (1983, Reprint)

    Google Scholar 

  9. Downs, R.M., Stea D.: Kognitive Karten. Die Welt in unseren Köpfen. Harper & Row. UTB, New York (1982)

    Google Scholar 

  10. Norman, D.A.: Cognitive engineering. In: Norman, A.D., Draper, S.W., (Hrsg.) User Centered System Design. New Perspectives on Human-Computer Interaction, S. 31–61. Lawrence Erlbaum, Hillsdale (1986)

    Chapter  Google Scholar 

  11. Wehrend, S., Lewis, C.: A problem-oriented classification of visualization techniques. In: IEEE Proceedings of the First IEEE Conference on Visualization: Visualization’90, San Francisco, S. 139–143. IEEE (1990)

    Google Scholar 

  12. Casner, S.: A task-analytic approach to the automated design of graphic presentations. ACM Trans. Graph. 10(2), 111–151 (1991)

    Article  Google Scholar 

  13. Knapp, L.: A task analysis approach to the visualization of geographic data. In: Nyerges, T.L. et al. (Hrsg.) Cognitive Aspects of Human-Computer Interaction for Geographic Information Systems, S. 355–371. Kluwer Academic, Dordrecht/Boston (1995)

    Chapter  Google Scholar 

  14. Thomas, J.J., Cook, K.A. (Hrsg.): Illuminating the path: The research and development agenda for visual analytics, 1. Aufl. IEEE, Los Alamitos (2005)

    Google Scholar 

  15. Keim, D.A., Mansmann, F., Schneidewind, J., Ziegler, H.: Challenges in visual data analysis. In: Proceedings of Information Visualization (IV 2006), Baltimore, S. 9–16. IEEE (2006)

    Google Scholar 

  16. DiBiase, D.: Visualization in the earth sciences. Earth Miner. Sci. 59(2), 13–18 (1990)

    Google Scholar 

  17. Peterson, M.P.: Interactive and animated cartography. Prentice Hall, Englewood Cliffs (1995)

    Google Scholar 

  18. MacEachren, A.M.: How maps work: Representation, visualization, and design. Paperback Edition 2004. The Guilford Press, New York (1995)

    Google Scholar 

  19. MacEachren, A.M., Kraak, M.-J.: Research challenges in geovisualization. Cartogr. Geogr. Inf. Sci. 28(1), 3–12 (2001)

    Article  Google Scholar 

  20. Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Fabrikant, S., Jern, M., Kraak, M.-J., Schumann, H., Tominski, C.: Space, time and visual analytics. Int. J. Geogr. Inf. Sci. 24(10), 1577–1600 (2010)

    Article  Google Scholar 

  21. Andrienko, N., Andrienko, G.: Exploratory analysis of spatial and temporal data: A systematic approach. Springer, Berlin (2006)

    Google Scholar 

  22. Wang, N., Biggs, T., Skupin, A.: Visualizing gridded time series data with self-organizing maps: an application to multi-year snow dynamics in the northern hemisphere. Comput. Environ. Urban Syst. 39, 107–120 (2013)

    Article  Google Scholar 

  23. Guo, D., Gahegan, M., MacEachren, A.M., et al.: Multivariate analysis and eovisualization with an integrated geographic knowledge discovery approach. Cartogr. Geogr. Inf. Sci. 32(2), 113–132 (2005)

    Article  Google Scholar 

  24. Köthur, P., Sips, M., Unger, A., Kuhlmann, J., Dransch, D.: Interactive visual summaries for detection and assessment of spatiotemporal patterns in geospatial time series. Inf. Vis. 13(3), 283–298 (2014)

    Article  Google Scholar 

  25. Dykes, J., MacEachren, A.M., Kraak, M.-J. (Hrsg.): Exploring geovisualization. Elsevier, Amsterdam (2005)

    Google Scholar 

  26. Fuhrmann, S., Pike, W.: User-centered design of collaborative geovisualization tools. In: Dykes, J., MacEachren, A.M., Kraak, M.-J. (Hrsg.) Exploring geovisualization, S. 501–610. Elsevier, Amsterdam (2005)

    Google Scholar 

  27. Dransch, D.: Handlungsorientierte Mensch-Computer-Interaktion für die kartographische Informationsverarbeitung in Geo-Informationssystemen. Berliner geowissenschaftliche Abhandlungen, Reihe C: Kartographie. Selbstverlag Fachbereich Geowissenschaften – Freie Universität Berlin, Berlin (2002)

    Google Scholar 

  28. Card, S., Moran, T., Newell, A.: The Psychology of human computer interaction. Lawrence Erlbaum Associatles, Hillsdale (1983)

    Google Scholar 

  29. Aebli, H.: Denken: Das Ordnen des Tuns. Band I: Kognitive Aspekte der Handlungstheorie. Klett-Cotta, Stuttgart (1980)

    Google Scholar 

  30. Dörner, D.: Kognitive Prozesse und die Organisation des Handelns. In: Hacker, W., Voplert, M., Cranach, M., (Hrsg.) Kognitive und motivationale Aspekte der Handlung (1983)

    Google Scholar 

  31. Dransch, D., Köthur, P., Schulte, S., et al.: Assessing the quality of geoscientific simulation models with visual analytics methods - a design study. Int. J. Geogr. Inf. Sci. 24(10), 1459–1479 (2010)

    Article  Google Scholar 

  32. Preim, B.D., Dachselt, R.: Interaktive Systeme, Band 1: Grundlagen, Graphical User Interfaces, Informationsvisualisierung. Springer, Heidelberg (2010)

    Book  Google Scholar 

  33. Clark, R.E., Feldon, D., Van Merrienboer, J.J.G., Yates, K., Early, S.: Cognitive task analysis. In: Spector, J.M., Merrill, M.D., van Merrienboer, J.J.G., Driscoll, M.P. (Hrsg.) Handbook of Research on Educational Communications and Technology, 3. Aufl. Lawrence Erlbaum Associates, Mahwah (2008)

    Google Scholar 

  34. Jonassen, D.H., Tessmer, M., Hannum, W.H.: Task analysis methods for instructional design. Lawrence Erlbaum Associates, Mahwah (1999)

    Google Scholar 

  35. Unger, A., Schulte, S., Klemann, V., Dransch, D.: A visual analytics concept for the validation of geoscientific simulation models. IEEE Trans. Visualiz. Comput. Graph. 18(12), 2216–2225 (2012)

    Article  Google Scholar 

  36. Schumann, H., Müller, W.: Visualisierung. Grundlagen und allgemeine Methoden. Springer, Berlin (2000)

    Book  Google Scholar 

  37. Spence, R.: Information visualization: An introduction. Springer International Publishing, Cham (2014)

    Google Scholar 

  38. Bertin, J.: Graphische Semiologie: Diagramme, Netze, Karten. Walter de Gruyter, Berlin (1974)

    Book  Google Scholar 

  39. Hake, G., Grünreich, D., Meng, L.: Kartographie. Visualisierung raum-zeitlicher Information. Walter De Gruyter, Berlin (2002)

    Google Scholar 

  40. Slocum, T.A., McMaster, R.B., Kessler, F.C., Howard, H.H.: Thematic Cartography and Geographical Visualization. Prentice Hall, Upper Saddle River (2009)

    Google Scholar 

  41. Chen, M., Kaufman A.E., Yagel, R. (Hrsg.): Volume graphics. Springer, London/New York (2000)

    Google Scholar 

  42. Engel, K., Hadwiger, M., Kniss, J., Rezk-Salama, Ch., Weiskopf, D. (Hrsg.): Real-time volume graphics. A K Peters, Wellesley (2006)

    Google Scholar 

  43. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of time-oriented data. human-computer interaction series. Springer, Berlin (2011)

    Google Scholar 

  44. Han, H., Kamber, M., Pei, J.: Data Mining: Concepts and techniques. Morgan Kaufmann Series in Data Management Systems, 3. überarb. Aufl. Elsevier, Oxford (2011)

    Google Scholar 

  45. Quinlan, J.R.: Induction of decision trees. Machine Learning, Bd. 1(1). Kluwer Academic, Boston (1986)

    Google Scholar 

  46. Quinlan, J.R.: Programs for machine learning. Morgan Kaufmann Series in Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  47. Bishop, C.: Pattern recognition and machine learning. Springer series in information science and statistic. Springer, New York (2007)

    Google Scholar 

  48. Vapnik, V.: The nature of statistical learning theory. Springer series in information science and statistics. Springer, New York (1999)

    Google Scholar 

  49. Ester, M., Sander, J.: Knowledge discovery in databases. Techniken und Anwendungen. Springer, Berlin/New York (2000)

    Book  Google Scholar 

  50. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: 5th Berkely Symposium on Mathematical Statistics and Probability, S. 281–297. University of California Press, Berkeley und Los Angeles (1967)

    Google Scholar 

  51. Jain, A.K., Dubes, R.C.: Algorithms for clustering data. Prentice hall advanced reference series: Computer science. Prentice Hall, Englewood Cliffs (1988)

    Google Scholar 

  52. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: ACM Internation Conference on Knowledge Discovery and Data Mining (KDD’96). AAAI Press, Menlo Park (1996)

    Google Scholar 

  53. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: ACM International Conference on Management of Data (SIGMOD’94). ACM, New York (1994)

    Google Scholar 

  54. Gray, J., Chaudhuri, S., Bosworth, A., Layman, A., Reichart, D., Venkatrao, M., Pellow, F., Pirahesh, H.: Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1(1), 29–53. Kluwer Academic Publishers (1997)

    Google Scholar 

  55. Köthur, P., Sips, M., Dobslaw, H., Dransch, D.: Visual analytics for comparison of ocean model output with reference data: detecting and analyzing geophysical processes using clustering ensembles. IEEE Trans. Vis. Comput. Graph. 20(12), 1893–1902 (2014)

    Article  Google Scholar 

  56. Köthur, P., Witt, C., Sips, M., Marwan, N., Schinkel, S., Dransch, D.: Visual analytics for correlation-based comparison of time series ensembles. Comput. Graph. Forum 34(3), 411–420 (2015, im Druck)

    Google Scholar 

  57. Andrienko, G., Andrienko, N., Bak, P., Keim, D., Wrobel, S.: Visual analytics of movement. Springer, Berlin (2013)

    Book  Google Scholar 

  58. Luo, W., MacEachren, A.: Geo-social visual analytics. J. Spat. Inf. Sci. 8, 27–66 (2014)

    Google Scholar 

  59. Tomaszewski, B., Mac Eachren, A.: Geovisual analytics to support crisis management: information foraging for geo-historical context. Inf. Vis. 11(4), 339–359 (2012)

    Article  Google Scholar 

  60. Ardhuin, F., Stutzmann, E., Schimmel, M., Mangeney, A.: Ocean wave sources of seismic noise. J. Geophys. Res. 116, 2156–2202 (2011). https://doi.org/10.1029/2011JC006952

    Article  Google Scholar 

  61. Wahr, J., Molenaar, M., Bryan, F.: Time variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J. Geophys. Res. Solid Earth 103(B12), 30205–30229 (1998). https://doi.org/10.1029/98JB02844

    Article  Google Scholar 

  62. Gray, J.: Jim Gray on eScience: a transformed scientific method. In: Hey, T., Tansley, S., Tolle, K. (Hrsg.) The Fourth Paradigm: Data-Intensive Scientific Discovery, S. xvii–xxxi. Microsoft Research, Redmond (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doris Dransch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dransch, D., Sips, M., Unger, A. (2019). GeoVisual Analytics. In: Sester, M. (eds) Geoinformatik. Springer Reference Naturwissenschaften . Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47096-1_60

Download citation

Publish with us

Policies and ethics