Skip to main content

Catalytic Oxidations Over Titanosilicate Zeolites

  • Chapter
Zeolites in Sustainable Chemistry

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

An important topic in the field of zeolite is the titanosilicate with tetrahedral Ti sites, which have already been regarded as efficient catalyst for the oxidation of various organic substrates by hydrogen peroxide. Since the first report of TS-1 zeolite in 1983, a variety of titanosilicates with various morphologies have been synthesized and applied in the oxidation reactions. The physical parameters of structures, porosities, Ti loadings, and wettabilities strongly determine the catalytic properties of the titanosilicate catalysts. The TS-1 zeolite is efficient for the hydroxylation of benzene and phenol, as well as the epoxidation and ammoxidation of olefins and ketons with small molecule size. Ti-Beta with larger micropores than TS-1 exhibits excellent catalytic performances in the oxidation of bulky molecules. Ti-MWW zeolites with a unique two-dimensional structure are also used in the oxidation of olefins, ammoxidation of ketons, and oxidative desulfurization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taramasso M, Perego G et al (1983) Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides. US Patent 4,410,501

    Google Scholar 

  2. Thangaraj A, Kumar R et al (1991) Catalytic properties of caystalline titanium silicalites 1. Synthesis and characterization of titanium-rich zeolites with MFI structure. J Catal 130:1–8

    Article  CAS  Google Scholar 

  3. Corma A (2003) State of the art and future challenges of zeolites as catalysts. J Catal 216:298–312

    Article  CAS  Google Scholar 

  4. Millini R, Massara E et al (1992) Framework composition of titanium silicate-1. J Catal 137:497–503

    Article  CAS  Google Scholar 

  5. Thangaraj A, Sivasanker S et al (1991) Catakytic properties of crystalline titanium silicates. 3. ammoximation of cyclohexone. J Catal 131:394–400

    Article  CAS  Google Scholar 

  6. Camblor M, Corma A et al (1993) Synthesis of titanoaluminosilicates isomorphous to zeolite Beta, active as oxidation catalysts. Zeolite 13:82–87

    Article  CAS  Google Scholar 

  7. Camblor M, Constantini M et al (1996) Synthesis and catalytic activity of aluminium-free zeolite Ti-beta oxidation catalysts. Chem Commun 11:1339–1440

    Article  Google Scholar 

  8. Blasco T, Camblor M et al (1993) The state of Ti in titanoaluminosilicates isomorphous with zeolite-Beta. J Am Chem Soc 115:11806–11813

    Article  CAS  Google Scholar 

  9. Corma A, Esteve P et al (1995) Oxidation of olefins with hydrogen-peroxide and tert-butyl hydroperoxide on Ti-Beta catalyst. J Catal 152:18–24

    Article  CAS  Google Scholar 

  10. Wu P, Komatsu T et al (1996) Characterization of titanium species incorporated into dealuminated mordenites by means of IR soectroscopy and O-18-exchange technique. J Phys Chem 100:10316–10322

    Article  CAS  Google Scholar 

  11. Diaz-Cabanas M, Villaescusa LA et al (2000) Synthesis and catalytic activity of Ti-ITQ-7: a new oxidation catalyst with a three-dimensional system of large pore channels. Chem Commun 9:761–762

    Article  Google Scholar 

  12. Wu P, Tatsumi T et al (2001) A novel titanosilicate with MWW structure. I. Hydrothermal synthesis, elimination of extraframework titanium, and characterizations. J Phys Chem B 105:2897–2905

    Article  CAS  Google Scholar 

  13. Wu P, Tatsumi T et al (2001) A novel titanosilicate with MWW structure: II. Catalytic properties in the selective oxidation of alkenes. J Catal 202:245–255

    Article  CAS  Google Scholar 

  14. Wu P, Liu Y et al (2004) A novel titanosilicate with MWW structure: catalytic properties in selective epoxidation of diallyl ether with hydrogen peroxide. J Catal 228:183–191

    CAS  Google Scholar 

  15. Kubota Y, Koyama Y et al (2008) Synthesis and catalytic performance of Ti-MCM-68 for effective oxidation reactions. Chem Commun 46:6224–6226

    Article  Google Scholar 

  16. Thangaraj A, Kumar R et al (1991) Catalytic properties of crystalline titanium silicates. 2. Hydroxylation of phenol with hydrogen-peroxide over TS-1 zeolites. J Catal 131:294–297

    Article  CAS  Google Scholar 

  17. Tuel A, Moussa-Khouzami et al (1991) Hydroxylation of phenol over TS-1: surface and solvent effects. J Mol Catal 68:45–52

    Article  CAS  Google Scholar 

  18. Bhaumik A, Mukherjee P et al (1998) Triphase catalysis over titanium–silicate molecular sieves under solvent-free conditions: I. Direct hydroxylation of benzene. J Catal 178:101–107

    Article  CAS  Google Scholar 

  19. Thangaraj A, Kumar R et al (1990) Direct catalytic hydroxylation of benzene with hydrogen–peroxide over titanium silicate zeolites. Appl Catal 57:L1–L3

    Article  CAS  Google Scholar 

  20. Bhaumik A, Kumar R et al (1995) Titanium silicate molecular sieve (TS-1)/H2O2 induced triphase catalysis in the oxidation of hydrophobic organic compounds with significant enhancement of activity and Para-selectivity. J Chem Soc Chem Commun 3:349–350

    Article  Google Scholar 

  21. Bianchi D, Bortolo R et al (2004) Preparing phenol for use as intermediate, e.g. in production of polycarbonates, by synthesis process of phenol with hydrodeoxygenation section of by-products which are selectively transformed into phenol and recycled in process streams. US Patent 7038093-B2

    Google Scholar 

  22. Bianchi D, Bortolo R et al (2006) Continuous process to prepare phenol involves feeding to fixed bed reactor containing catalyst based on titanium silicalite, stream having hydrogen peroxide, benzene, sulfolane and water at specific operative conditions. US Patent 2010184593-A1

    Google Scholar 

  23. Bianchi D, D’Aloisio R et al (2007) Oxidation of mono- and bicyclic aromatic compounds with hydrogen peroxide catalyzed by titanium silicalites TS-1 and TS-1B. Appl Catal A Gen 327:295–299

    Article  CAS  Google Scholar 

  24. Bianchi D, Balducci L et al (2007) Oxidation of benzene to phenol with hydrogen peroxide catalyzed by a modified titanium silicalite (TS-1B). Adv Synth Catal 349:979–986

    Article  CAS  Google Scholar 

  25. Xiao F-S, Han Y et al (2002) Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. J Am Chem Soc 124:888–889

    Article  CAS  Google Scholar 

  26. Xin H, Zhao J et al (2010) Enhanced catalytic oxidation by hierarchically structured TS-1 zeolite. J Phys Chem C 114:6553–6559

    Article  CAS  Google Scholar 

  27. Trent DL (1996) Kirk-Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  28. Haruta M, Date M (2001) Advances in the catalysis of Au nanoparticles. Appl Catal A Gen 222:427–437

    Article  CAS  Google Scholar 

  29. Hayashi T, Tanaka K et al (1998) Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J Catal 178:566–575

    Article  CAS  Google Scholar 

  30. Grasselli RK, Burrington JD et al (1981) Selective oxiaiton and ammoxidation of propylene by heterogeneous catalysis. Adv Catal 30:133–163

    CAS  Google Scholar 

  31. Kamata K, Yonehara K et al (2003) Efficient epoxidation of olefins with >= 99% selectivity and use of hydrogen peroxide. Science 300:964–966

    Article  CAS  Google Scholar 

  32. Bettahar MM, Costentin G et al (1996) On the partial oxidation of propane and propylene on mixed metal oxide catalysts. Appl Catal A Gen 145:1–48

    Article  CAS  Google Scholar 

  33. Adams CR, Jennings TJ (1963) Investigation of the mechanism of catalytic oxidation of propylene to acrolein and acrylonitrile. J Catal 2:63–68

    Article  CAS  Google Scholar 

  34. Reitz JN, Solomon EI (1998) Propylene oxidation on copper oxide surfaces: electronic and geometric contributions to reactivity and selectivity. J Am Chem Soc 120:11467–11678

    Article  CAS  Google Scholar 

  35. Weissermel K, Arpe HJ (1993) Industrial organic chemistry. VCH, New York

    Google Scholar 

  36. Yap N, Andres RP et al (2004) Reactivity and stability of Au in and on TS-1 for epoxidation of propylene with H2 and O2. J Catal 226:156–170

    Article  CAS  Google Scholar 

  37. Hayashi T, Tanaka K et al (1996) Selective partial oxidation of hydrocarbons over Au/TiO2 catalysts. Am Chem Soc Div Petrol Chem 41:71–74

    CAS  Google Scholar 

  38. Haruta M, Uphade BS et al (1998) Selective oxidation of propylene over gold deposited on titanium-based oxides. Res Chem Intermed 24:329–336

    Article  CAS  Google Scholar 

  39. Kalvachev YA, Hayashi T et al (1997) Selective partial oxidation of propylene to propylene oxide on Au/Ti-MCM catalysts in the presence of hydrogen and oxygen. Stud Surf Sci Catal 110:965–972

    Article  CAS  Google Scholar 

  40. Kalvachev YA, Hayashi T et al (1999) Vapor-phase selective oxidation of aliphatic hydrocarbons over gold deposited on mesoporous titanium silicates in the co-presence of oxygen and hydrogen. J Catal 186:228–233

    Article  CAS  Google Scholar 

  41. Uphade BS, Tsubota S et al (1998) Selective oxidation of propylene to propylene oxide or propionaldehyde over au supported on titanosilicates in the presence of H2 and O2. Chem Lett 12:1277–1278

    Article  Google Scholar 

  42. Uphade BS, Okumura M et al (2000) Effect of physical mixing of CsCl with Au/Ti-MCM-41 on the gas-phase epoxidation of propene using H2 and O2: drastic depression of H2 consumption. Appl Catal A Gen 190:43–50

    Article  CAS  Google Scholar 

  43. Uphade BS, Okumura M et al (2000) Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti-MCM-41 and Au/Ti-MCM-48. Stud Surf Sci Catal 130:833–838

    Article  Google Scholar 

  44. Uphade BS, Akita T et al (2002) Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti–MCM-48. J Catal 209:331–340

    Article  CAS  Google Scholar 

  45. Stangland EE, Stavens KB et al (2000) Characterization of gold–titania catalysts via oxidation of propylene to propylene oxide. J Catal 191: 332–347

    Google Scholar 

  46. Stangland EE, Stavens KB et al (2000) Propylene epoxidation over gold-titania catalysts. Stud Surf Sci Catal 130: 827–832

    Google Scholar 

  47. Haruta M, Yamada N et al (1989) Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J Catal 115:301–309

    Article  CAS  Google Scholar 

  48. Fan W, Wu P et al (2008) Unique solvent effect of microporous crystalline titanosilicates in the oxidation of 1-hexene and cyclohexene. J Catal 256:62–73

    Article  CAS  Google Scholar 

  49. Zhuang J, Yang G et al (2004) In situ magnetic resonance investigation of styrene oxidation over TS-1 zeolites. Angew Chem Int Ed 43:6377–6381

    Article  CAS  Google Scholar 

  50. Clerici M, Ingallina P (1993) Epoxidation of lower olefins with hydrogen peroxide and titanium silicalite. J Catal 140:71–83

    Article  CAS  Google Scholar 

  51. Bordiga S, Damin A et al (2002) The structure of the peroxo species in the TS-1 catalyst as investigated by resonant Raman spectroscopy. Angew Chem Int Ed 41:4734–4737

    Article  CAS  Google Scholar 

  52. Notari B (1996) Microporous crystalline titanium silicates. Adv Catal 41:253–334

    CAS  Google Scholar 

  53. Wang L, Sun J et al (2014) A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chem Commun 50:2012–2014

    Article  CAS  Google Scholar 

  54. Lin W, Frei H (2002) Photochemical and FT-IR probing of the active site of hydrogen peroxide in Ti silicalite sieve. J Am Chem Soc 124:9292–9298

    Article  CAS  Google Scholar 

  55. Kumar S, Mirajkar S et al (1995) Epoxidation of styrene over a titanium silicate molecular sieve TS-1 using dilute H2O2 as oxidizing agent. J Catal 156:163–166

    Article  CAS  Google Scholar 

  56. Uguina M, Serrano D et al (2000) Preliminary study on the TS-1 deactivation during styrene oxidation with H2O2. Catal Today 61:263–270

    Article  CAS  Google Scholar 

  57. Laha SL, Kumar R (2001) Selective epoxidation of styrene to styrene oxide over TS-1 using urea–hydrogen peroxide as oxidizing agent. J Catal 2001(204):64–70

    Article  Google Scholar 

  58. Bellussi G, Carati A, Clerici MG, Maddinelli G, Millini R (1992) J Catal 133:220

    Article  CAS  Google Scholar 

  59. Cundy CS, Forrest JO et al (2003) Some observations on the preparation and properties of colloidal silicalites. Part I: synthesis of colloidal silicalite-1 and titanosilicalite-1 (TS-1). Microporous Mesoporous Mater 66:143–156

    Article  CAS  Google Scholar 

  60. Wang X, Guo X et al (2014) Quick synthesis of nano-scale TS-1 and its catalytic properties. Stud Surf Sci Technol 154:2589–2595

    Google Scholar 

  61. Schmidt I, Krogh A et al (2000) Catalytic epoxidation of alkenes with hydrogen peroxide over first mesoporous titanium-containing zeolite. Chem Commun 21:2157–2158

    Article  Google Scholar 

  62. Serrano D, Sanz R et al (2009) Turning TS-1 zeolite into a highly active catalyst for olefin epoxidation with organic hydroperoxides. Chem Commun 11:1407–1409

    Article  Google Scholar 

  63. Wang J, Xu L et al (2012) Multilayer structured MFI-type titanosilicate: synthesis and catalytic properties in selective epoxidation of bulky molecules. J Catal 288:16–23

    Article  CAS  Google Scholar 

  64. Ichihashi H, Sato H (2001) The development of new heterogeneous catalytic processes for the production of ε-caprolactam. Appl Catal A Gen 221:359–366

    Article  CAS  Google Scholar 

  65. Armor JN (1981) Ammoximation: I. A direct route to cyclohexanone oxime and caprolactam from NH3, O2, and cyclohexanone. J Catal 70:72–83

    Article  CAS  Google Scholar 

  66. Forni L, Stanga M (1979) Pyridines by propylene ammoxidation over Te oxide/silica-alumina. J Catal 59:148–151

    Article  CAS  Google Scholar 

  67. Martin A, Lucke B et al (1989) Ammoxidation of picolines on vanadium phosphate catalysts. Appl Catal 49:205–211

    Article  CAS  Google Scholar 

  68. Song F, Liu Y et al (2007) Highly selective synthesis of methyl ethyl ketone oxime through ammoximation over Ti-MWW. Appl Catal A Gen 327:22–31

    Article  CAS  Google Scholar 

  69. Wu P, Komatsu T et al (1997) Ammoximation of ketones over titanium mordenite. J Catal 168:400–411

    Article  CAS  Google Scholar 

  70. Song F, Liu Y et al (2006) A novel titanosilicate with MWW structure: highly effective liquid-phase ammoximation of cyclohexanone. J Catal 237:359–367

    Article  CAS  Google Scholar 

  71. Roffia P, Leofanti G et al (1990) Cyclohexanone ammoximation: a break through in the 6-caprolactam production. Process Stud Surf Sci Catal 55:43–50

    Article  CAS  Google Scholar 

  72. Zecchina A, Spoto G et al (1993) Ammoximation of cyclohexanone on titanium silicalite: investigation of the reaction mechanism. Stud Surf Sci Catal 75:719–729

    Article  CAS  Google Scholar 

  73. Fan WB, Duan R-G et al (2008) Synthesis, crystallization mechanism, and catalytic properties of titanium-rich TS-1 free of extraframework titanium species. J Am Chem Soc 130:10150–10164

    Article  CAS  Google Scholar 

  74. Clerici MG, Bellussi G et al (1991) Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. J Catal 129:159–167

    Article  CAS  Google Scholar 

  75. Tuel A, Ben TY (1993) Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide. Appl Catal A Gen 102:69–77

    Article  CAS  Google Scholar 

  76. Pauls DL, Cohen DJ et al (1981) Familial pattern and transmission of gilles-delatourette syndrome and multiple tics. Arch Gen Psychiatry 38:1091–1093

    Article  CAS  Google Scholar 

  77. Reddy JS, Kumar R et al (1990) Titanium silicalite-2: synthesis, characterization and catalytic properties. Appl Catal 58:Ll–L4

    Article  Google Scholar 

  78. Reddy JS, Kumar R (1991) Synthesis, characterzation, and catalytic properties of a titanium silicate, TS-2, with mel structure. J Catal 130:440–446

    Article  CAS  Google Scholar 

  79. Reddy JS, Sivasanker S et al (1992) Hydroxylation of phenol over ts-2, a titanium silicate molecular sieve. J Mol Catal 71:373–381

    Article  CAS  Google Scholar 

  80. Kraushaar B, Van Hoof JHC (1988) A new method for the preparation of titanium-silicalite (TS-1). Catal Lett 1:81–84

    Article  CAS  Google Scholar 

  81. Reddy JS, Sivasanker S et al (1992) Crystallization kinetics of a new titanium silicate with MEL structure (TS-2). Zeolites 12:95–100

    Article  CAS  Google Scholar 

  82. Laha SC, Kumar R (2002) Highly selective epoxidation of olefinic compounds over TS-1 and TS-2 redox molecular sieves using anhydrous urea–hydrogen peroxide as oxidizing agent. J Catal 208:339–344

    Article  CAS  Google Scholar 

  83. Camblor MA, Corma A et al (1992) Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules. J Chem Soc Chem Commun 8:589–590

    Article  Google Scholar 

  84. Corma A, Camblor MA et al (1994) Activity of Ti-Beta catalyst for the selective oxidation of alkenes and alkanes. J Catal 145:151–158

    Article  CAS  Google Scholar 

  85. Camblor MA, Costantini M et al (1996) The roots of organic development. Elsevier, Amsterdam

    Google Scholar 

  86. Blasco T, Camblor MA et al (1998) Direct synthesis and characterization of hydrophobic aluminum-free Ti-Beta zeolite. J Phys Chem B 102:75–88

    Article  CAS  Google Scholar 

  87. Adam W, Corma A et al (1997) Diastereoselective catalytic epoxidation of chiral allylic alcohols by the TS-1 and Ti-â zeolites: evidence for a hydrogen-bonded, peroxy-type loaded complex as oxidizing species. J Org Chem 62:3631–3637

    Article  CAS  Google Scholar 

  88. Corma A, Iglesia M et al (1996) Large pore Ti-zeolites and mesoporous Ti-silicalites as catalysts for selective oxidation of organic sulfides. Catal Lett 39:153–156

    Article  CAS  Google Scholar 

  89. Corma A, Diaz U et al (1999) Ti/ITQ-2, a new material highly active and selective for the epoxidation of olefins with organic hydroperoxides. Chem Commun 9:779–780

    Article  Google Scholar 

  90. Levin D, Chang CD et al (2000) Crystalline zeolite for separation and catalytic conversion of organic compounds. US Patent 6,114,551

    Google Scholar 

  91. Wu P, Nuntasri D et al (2004) Delamination of Ti-MWW and high efficiency in epoxidation of alkenes with various molecular sizes. J Phys Chem B 108:19126–19131

    Article  CAS  Google Scholar 

  92. Wang L, Wang Y et al (2009) Alkoxysilylation of Ti-MWW lamellar precursors into interlayer pore-expanded titanosilicates. J Mater Chem 19:8594–8602

    Article  CAS  Google Scholar 

  93. Wu P, Tatsumi T (2003) A novel titanosilicate with MWW structure III. Highly efficient and selective production of glycidol through epoxidation of allyl alcohol with H2O2. J Catal 214:317–326

    Article  CAS  Google Scholar 

  94. Weissermel K, Arpe HJ (1994) Industrielle organische chemie. VCH, Weinheim

    Google Scholar 

  95. Wittcoff HA, Reuben BG (1996) Industrial organic chemicals. Wiley, New York

    Google Scholar 

  96. Taramasso M, Perego G et al (1983) Heat-stable modified crystalline silicic acid catalyst useful as catalyst and adsorbent. US Patent 4,410,501

    Google Scholar 

  97. Hutchings GJ, Lee DF (1994) Catalytic heterogeneous aziridination of alkenes using microporous materials. Chem Commun 15:1601–1602

    Google Scholar 

  98. Hutchings GJ, Lee DF et al (1995) Epoxdatopn of allyl alcohol to glycidol using titanium silicalite TS-1 effect of the method of preparation. Catal Lett 33:369–385

    Article  CAS  Google Scholar 

  99. Hutchings GJ, Lee DF et al (1996) Epoxidation of allyl alcohol to glycidol using titanium silicalite TS-1: effect of the reaction conditions and catalyst acidity. Catal Lett 39:83–90

    Article  CAS  Google Scholar 

  100. Wang L, Wang Y et al (2008) Post-transformation of MWW-type lamellar precursors into MCM-56 analogues. Microporous Mesoporous Mater 113:435–444

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Shou Xiao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wang, L., Xiao, FS. (2016). Catalytic Oxidations Over Titanosilicate Zeolites. In: Xiao, FS., Meng, X. (eds) Zeolites in Sustainable Chemistry. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47395-5_11

Download citation

Publish with us

Policies and ethics