Skip to main content

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 197))

Abstract

FLASH, the Free-electron LASer in Hamburg, is the world’s first free electron laser for extremely bright and ultra-short pulses in the extreme ultraviolet and soft X-ray range. Efficient photon beam transport and diagnostics play an essential role in exploiting the features of this new generation of light sources in a large variety of user experiments. A detailed overview of the FLASH user facility is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Ackermann et al., Nat. Photonics 1, 336–342 (2007)

    Article  ADS  MATH  Google Scholar 

  2. V. Ayvazyan et al., Eur. Phys. J. D 37, 297–303 (2006)

    Article  ADS  Google Scholar 

  3. K. Tiedtke et al., New J. Phys. 11, 023029 (2009)

    Article  ADS  Google Scholar 

  4. S. Schreiber, in Proceeding of FEL2011, Shanghai, pp. 164–165 (2011)

    Google Scholar 

  5. S. Schreiber, in Proceedings of FEL2011, Shanghai, pp. 267–270 (2011)

    Google Scholar 

  6. E.L. Saldin, E.A. Schneidmiller, M. Yurkov, The Physics of Free Electron Lasers. (Springer, Berlin-Heidelberg, 2000)

    Google Scholar 

  7. A.A. Sorokin et al., Phys. Rev. Lett. 99, 213002 (2007)

    Article  ADS  Google Scholar 

  8. A.J. Nelson et al., Opt. Express 17, 18271–18278 (2009)

    Article  ADS  Google Scholar 

  9. S. Bajt et al., Photon science (2012), http://photon-science.desy.de/annual_report/

  10. L. Strüder et al., NIM A 614, 483–96 (2010)

    Article  ADS  Google Scholar 

  11. M. Martins et al., Rev. Sci. Instr. 77, 115108 (2006)

    Article  ADS  Google Scholar 

  12. M. Wellhöfer et al., J. Opt. A. 9, 749 (2007)

    Article  ADS  Google Scholar 

  13. S.W. Epp et al., Phys. Rev. Lett. 98, 183001 (2007)

    Article  ADS  Google Scholar 

  14. A. Singer et al., Phys. Rev. Lett. 111, 034802 (2013)

    Article  ADS  Google Scholar 

  15. S. Hellmann et al., New J. Phys. 14, 013062 (2012)

    Article  ADS  Google Scholar 

  16. N. Gerasimova et al., J. Mod. Opt. 58, 1480 (2011)

    Article  ADS  Google Scholar 

  17. A. Rusydi, M. Rübhausen et al., Screening enhanced hole pairing in Spin \(=\) 1/2 two-leg ladder compounds unravelled by high-resolution resonant inelastic X-ray scattering at FLASH (in preparation)

    Google Scholar 

  18. S. Pauliuk et al., in Proceedings of EPAC08, Genoa, pp. 124–26 (2008)

    Google Scholar 

  19. A.R. Khorsand et al., Opt. Express 18, 700–712 (2010)

    Article  ADS  Google Scholar 

  20. J. Kuba et al., NIM A 507, 475–78 (2003)

    Article  ADS  Google Scholar 

  21. S.P. Hau-Riege et al., Appl. Phys. Lett. 93, 201105 (2008)

    Article  ADS  Google Scholar 

  22. S.P. Hau-Riege et al., Phys. Rev. E 76, 046403 (2007)

    Article  ADS  Google Scholar 

  23. S.P. Hau-Riege et al., Opt. Express 18, 23933–38 (2010)

    Article  ADS  Google Scholar 

  24. M. Kuhlmann et al., in Proceedings of FEL 2006, Berlin, pp. 794–797 (2006)

    Google Scholar 

  25. B. Flöter et al., NIM A 635, S108–S111 (2011)

    Article  ADS  Google Scholar 

  26. L. Raimondi et al., in Proceedings of SPIE Optics \(+\) Photonics, San Diego (2013)

    Google Scholar 

  27. A. Singer et al., Phys. Rev. Lett. 101, 254801 (2008)

    Article  ADS  Google Scholar 

  28. R. Mitzner et al., Opt. Express 16, 19909–19 (2008)

    Article  ADS  Google Scholar 

  29. R. Ischebeck et al., NIM A 507, 175–180 (2003)

    Article  ADS  Google Scholar 

  30. T. Mey et al., in Proceedings of SPIE, vol. 8778, 87780H1-8 (2013)

    Google Scholar 

  31. B. Schäfer et al., in Proceedings of SPIE, vol. 8778, 877810-10 (2013)

    Google Scholar 

  32. L. Poletto et al., in Proceedings of SPIE, vol. 5534, p. 37 (2004)

    Google Scholar 

  33. M. Richter et al., Appl. Phys. Lett. 83, 2970 (2003)

    Article  ADS  Google Scholar 

  34. K. Tiedtke et al., J. Appl. Phys. 103, 094511 (2008)

    Article  ADS  Google Scholar 

  35. F. Frassetto et al., NIM A 635, S94–S98 (2011)

    Article  ADS  Google Scholar 

  36. G. Brenner et al., NIM A 635, S99–S103 (2011)

    Article  ADS  Google Scholar 

  37. P. Juranic et al., JINST 4, P09011 (2009)

    Article  ADS  Google Scholar 

  38. M. Wellhöfer et al., JINST 3, P02003 (2008)

    Article  ADS  Google Scholar 

  39. M. Braune, G. Brenner, S. Dziarzhytski, K. Tiedtke, Cross-calibration measurements for online wavelength monitoring at FLASH (in preparation)

    Google Scholar 

  40. S. Düsterer et al., Phys. Rev. STAB 17, 120702 (2014)

    Google Scholar 

  41. U. Hahn, K. Tiedtke, in AIP Conference Proceedings, vol. 879, pp. 276–282 (2007)

    Google Scholar 

  42. S. Düsterer et al., Opt. Lett. 31, 1750–2 (2006)

    Article  ADS  Google Scholar 

  43. B.L. Henke, E.M. Gullikson, J.C. Davis (1992) Atomic Data Nuclear Data Tables 54 181, CXRO website, http://henke.lbl.gov/optical_constants/

  44. S. Toleikis et al., Photon science (2009), http://photon-science.desy.de/annual_report/

  45. M. Wöstmann et al., J. Phys. B: At. Mol. Opt. Phys. 46, Special Issue: Frontiers of FEL Science 164005 (2013)

    Google Scholar 

  46. F. Sorgenfrei et al., Rev. Sci. Instrum 81, 043107–7 (2010)

    Article  ADS  Google Scholar 

  47. H. Redlin et al., NIM A 635, S88–S93 (2012)

    Article  Google Scholar 

  48. S. Schulz et al., in Proceedings of SPIE, vol. 8778, 87780R1-9 (2013)

    Google Scholar 

  49. M. Gensch et al., Infrared Phys. Techn. 51, 423–25 (2008)

    Article  ADS  Google Scholar 

  50. B. Faatz et al., NIM A 635, S2–S5 (2011)

    Article  ADS  Google Scholar 

  51. K. Honkavaara et al., in Proceedings of FEL2012, Nara, pp. 381–84 (2012)

    Google Scholar 

  52. M. Kuhlmann et al., in Proceedings of SPIE, vol. 8778, 87781A1-7 (2013)

    Google Scholar 

  53. E. Plönjes et al., in Proceedings of FEL2013, New York (2013)

    Google Scholar 

Download references

Acknowledgments

The authors are indebted to all collaboration partners and the FLASH team at DESY for their contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Plönjes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plönjes, E., Tiedtke, K. (2015). The Soft X-ray Free-Electron Laser FLASH at DESY. In: Canova, F., Poletto, L. (eds) Optical Technologies for Extreme-Ultraviolet and Soft X-ray Coherent Sources. Springer Series in Optical Sciences, vol 197. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47443-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-47443-3_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-47442-6

  • Online ISBN: 978-3-662-47443-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics