Skip to main content

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

  • 1248 Accesses

Abstract

The shape control of nano- and microcrystals has received considerable attention because the morphology, dimensionality, and size of materials are well known to have great effects on their physical and chemical properties, as well as on their applications in optoelectronic devices. Ionic liquids were found to be very advantageous in synthetic nanochemistry, especially as templates and capping agents. Their particular phase behavior and unique physicochemical properties, including complex solvation interactions with organic and inorganic compounds, can provide various growth pathways for nanocrystals with novel morphologies and properties. This chapter gives an overview of existing ionic liquid-assisted hydrothermal method for the synthesis of rare earth luminescence materials. Particular attention is given to synthesis mechanism and the role of ionic liquids in the formation of specific morphology, as well as the effect of morphology on the luminescent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Berlin

    Book  Google Scholar 

  2. Huang CH, Chen TM (2011) A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3 +, Mn2 +, Tb3 + phosphor for UV-light emitting diodes. J Phys Chem C 115:2349–2355

    Article  CAS  Google Scholar 

  3. Lorbeer C, Cybińska J, Mudring AV (2011) Europium(III) fluoride nanoparticles from ionic liquids: structural, morphological, and luminescent properties. Cryst Growth Des 11:1040–1048

    Article  CAS  Google Scholar 

  4. Lorbeer C, Cybińska J, Mudring AV (2010) Facile preparation of quantum cutting GdF3:Eu3+ nanoparticles from ionic liquids. Chem Commun 46:571–573

    Article  CAS  Google Scholar 

  5. Li C, Quan Z, Yang J, Yang P, Lin J (2007) Highly uniform and monodisperse β-NaYF4:Ln3+ (Ln = Eu, Tb, Yb/Er, and Yb/Tm) hexagonal microprism crystals: hydrothermal synthesis and luminescent properties. Inorg Chem 46:6329–6337

    Article  CAS  Google Scholar 

  6. Zhang C, Chen J, Zhou Y, Li D (2008) Ionic liquid-based “all-in-one” synthesis and photoluminescence properties of lanthanide fluorides. J Phys Chem C 112:10083–10088

    Article  CAS  Google Scholar 

  7. Crosthwaite JM, Muldoon MJ, Aki SN, Maginn EJ, Brennecke JF (2006) Liquid phase behavior of ionic liquids with alcohols: experimental studies and modeling. J Phys Chem B 110:9354–9361

    Article  CAS  Google Scholar 

  8. Crosthwaite JM, Aki SN, Maginn EJ, Brennecke JF (2004) Liquid phase behavior of imidazolium-based ionic liquids with alcohols. J Phys Chem B 108:5113–5119

    Article  CAS  Google Scholar 

  9. Swatloski RP, Holbrey JD, Rogers RD (2003) Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chem 5:361–363

    Article  CAS  Google Scholar 

  10. Jacob DS, Bitton L, Grinblat J, Felner I, Koltypin Y, Gedanken A (2006) Are ionic liquids really a boon for the synthesis of inorganic materials? A general method for the fabrication of nanosized metal fluorides. Chem Mater 18:3162–3168

    Article  CAS  Google Scholar 

  11. Miao Z, Liu Z, Ding K, Han B, Miao S, An G (2007) Controlled fabrication of rare earth fluoride superstructures via a simple template-free route. Nanotechnology 18:125605–125609

    Article  Google Scholar 

  12. Zhu L, Li Q, Liu X, Li J, Zhang Y, Meng J, Cao X (2007) Morphological control and luminescent properties of CeF3 nanocrystals. J Phys Chem C 111:5898–5903

    Article  CAS  Google Scholar 

  13. Jiang W, Wang T, Voth GA (2007) Molecular dynamics simulation of nanostructural organization in ionic liquid/water mixtures. J Phys Chem B 111:4812–4818

    Article  CAS  Google Scholar 

  14. Chaumont A, Wipff G (2005) Solvation of fluoro and mixed solvation of fluoro and mixed fluoro/chloro complexes of EuIII in the [BMIM][PF6] room temperature ionic liquid. A theoretical study. Phys Chem Chem Phys 7:1926–1932

    Article  CAS  Google Scholar 

  15. Chaumont A, Wipff G (2003) Solvation of M3+ lanthanide cations in room-temperature ionic liquids. A molecular dynamics investigation. Phys Chem Chem Phys 5:3481–3488

    Article  CAS  Google Scholar 

  16. Branco LC, Rosa JN, Ramos JJM, Afonso CAM (2008) Preparation and characterization of new room temperature ionic liquids. Chem Eur J 8:3671–3677

    Article  Google Scholar 

  17. Stouwdam JW, van Veggel FCJM (2002) Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles. Nano Lett 2:733–737

    Article  CAS  Google Scholar 

  18. Wang F, Zhang Y, Fan X, Wang M (2006) Facile synthesis of water-soluble LaF3:Ln3+ nanocrystals. J Mater Chem 16:1031–1034

    Article  CAS  Google Scholar 

  19. Wang L, Li P, Li Y (2007) Down- and up-conversion luminescent nanorods. Adv Mater 19:3304–3307

    Article  CAS  Google Scholar 

  20. Wang ZL, Quan ZW, Jia PY, Lin CK, Luo Y, Chen Y, Fang J, Zhou W, O’Connor CJ, Lin J (2006) A facile synthesis and photoluminescent properties of redispersible CeF3:Tb3 +, and CeF3:Tb3 +/ LaF3(core/shell) nanoparticles. Chem Mater 18:2030–2037

    Article  CAS  Google Scholar 

  21. Wang L, Li Y (2006) Na(Y1.5Na0.5)F6 single-crystal nanorods as multicolor luminescent materials. Nano Lett 6:1645–1649

    Article  Google Scholar 

  22. Li Q, Yam VWW (2007) Redox luminescence switch based on energy transfer in CePO4:Tb3+ nanowires. Angew Chem Int Ed 46:3556–3559

    Article  Google Scholar 

  23. Liu J, Liu X, Kong X, Zhang H (2012) Controlled synthesis, formation mechanism and upconversion luminescence of NaYF4: Yb, Er nano-/submicrocrystals via ionothermal approach. J Solid State Chem 190:98–103

    Article  CAS  Google Scholar 

  24. Song Y, Deng Y, Zhou H, Zhang H, Zou H, Chen J (2012) Ionic liquid-based hydrothermal synthesis and luminescent properties of CaF2:Ce3+/Mn2+ nanocrystals. J Nanoparticle Res 14:1258–1266

    Article  Google Scholar 

  25. Zou H, Song Y, Deng Y, Zhang H, Sheng Y, Zheng K, Zhou X, Chen J (2013) Ionic liquids assisted synthesis and luminescence properties of Ca5(PO4)3Cl:Ce3 +, Tb3 + nanostructures. J Nanoparticle Res 15:1973–1981

    Article  Google Scholar 

  26. Guo H, Zhang T, Qiao YM, Zhao LH, Li ZQ (2010) Ionic liquid-based approach to monodisperse luminescent LaF3:Ce, Tb nanodiskettes: synthesis, structural and photoluminescent properties. J Nanosci Nanotechnol 10:1913–1919

    Article  CAS  Google Scholar 

  27. Kundu S, Kar A, Patra A (2012) Morphology dependent luminescence properties of rare-earth doped lanthanum fluoride hierarchical microstructures. J Lumin 132:1400–1406

    Article  CAS  Google Scholar 

  28. Pileni MP (2003) The role of soft colloidal templates in controlling the size and shape of inorganic nanocrystals. Nat Mater 2:145–150

    Article  CAS  Google Scholar 

  29. Rodill E, Aldous L, Hardacre C, Lagunas MC (2008) Preparation of AgX (X = Cl, I) nanoparticles using ionic liquids. Nanotechnology 19:105603–105610

    Article  Google Scholar 

  30. Eastoe J, Gold S, Roger SE, Paul A, Welton T, Heenan RK, Grillo I (2005) Ionic liquid-in-oil microemulsions. J Am Chem Soc 127:7302–7303

    Article  CAS  Google Scholar 

  31. Hao J, Zemb T, Opin C (2007) Self-assembled structures and chemical reactions in room-temperature ionic liquids. J Colloid Interface Sci 12:129–137

    Article  CAS  Google Scholar 

  32. Cheng S, Zhang J, Zhang Z, Han B (2007) Novel microemulsions: ionic liquid-in-ionic liquid. Chem Commun 24:2497–2499

    Google Scholar 

  33. Gao Y, Zhang J, Xu H, Zhao X, Zheng L, Li X, Yu L (2006) Structural studies of 1-butyl-3-methylimidazolium tetrafluoroborate/TX-100/p-Xylene ionic liquid microemulsions. ChemPhysChem 7:1554–1561

    Article  CAS  Google Scholar 

  34. Moniruzzaman M, Kamiya N, Nakashima K, Goto M (2008) Formation of reverse micelles in a room-temperature ionic liquid. ChemPhysChem 9:689–692

    Article  CAS  Google Scholar 

  35. Patrascu C, Gauffre F, Nallet F, Bordes R, Oberdisse J, Lauth-Viguerie ND, Mingotaud C (2006) Micelles in ionic liquids: aggregation behavior of alkyl poly (ethylene glycol)-ethers in 1-butyl-3-methyl-imidazolium type ionic liquids. ChemPhysChem 7:99–101

    Article  CAS  Google Scholar 

  36. Blesic M, Marques MH, Plechkov NV, Seddon KR, Rebelo LSPN, Lopes AN (2007) Self-aggregation of ionic liquids: micelle formation in aqueous solution. Green Chem 9:481–490

    Article  CAS  Google Scholar 

  37. Singh T, Kumar A (2007) Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J Phys Chem B 111:7843–7851

    Article  CAS  Google Scholar 

  38. Goodchild I, Collier L, Millar SL, Prokes I, Lord JCD, Butts CP, Bowers J, Webster JRP, Heenan RK (2007) Structural studies of the phase, aggregation and surface behaviour of 1-alkyl-3-methylimidazolium halide + water mixtures. J Colloid Interface Sci 307:455–468

    Article  CAS  Google Scholar 

  39. Zhang C, Chen J, Zhu X, Zhou Y, Li D (2009) Synthesis of tributylphosphate capped luminescent rare earth phosphate nanocrystals in an ionic liquid microemulsion. Chem Mater 21:3570–3575

    Article  CAS  Google Scholar 

  40. Remsing RC, Liu Z, Sergeyev I, Moyna G (2008) N′-Dialkylimidazolium ionic liquids: a multinuclear NMR spectroscopy and molecular dynamics simulation study. J Phys Chem B 112:7363–7369

    Article  CAS  Google Scholar 

  41. Marcus Y (1963) Solvent extraction of inorganic species. Chem Rev 63:139–170

    Article  CAS  Google Scholar 

  42. Peng X, Schlamp MC, Kadavanich AV, Alivisatos AP (1997) Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility. J Am Chem Soc 119:7019–7029

    Article  CAS  Google Scholar 

  43. Peng ZA, Peng X (2001) Mechanisms of the shape evolution of CdSe nanocrystals. J Am Chem Soc 123:1389–1395

    Article  CAS  Google Scholar 

  44. Sapra S, Poppe J, Eychmuller A (2007) CdSe nanorod synthesis: a new approach. Small 3:1886–1888

    Article  CAS  Google Scholar 

  45. Yu L, Song H, Lu S, Liu Z, Yang L, Kong X (2004) Luminescent properties of LaPO4:Eu nanoparticles and nanowires. J Phys Chem B 108:16697–16702

    Article  CAS  Google Scholar 

  46. Zhang C, Chen J (2010) Facile EG/ionic liquid interfacial synthesis of uniform RE3+ doped NaYF4 nanocubes. Chem Commun 46:592–594

    Article  CAS  Google Scholar 

  47. Zhang C (2009) Preparation of rare earth nanomaterials in ionic liquids-based multiple phases systems. Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China

    Google Scholar 

  48. Binder WH (2005) Supramolecular assembly of nanoparticles at liquid–liquid interfaces. Angew Chem Int Ed 44:5172–5175

    Article  CAS  Google Scholar 

  49. Glaser N, Adams DJ, Bӧker A, Krausch G (2006) Janus particles at liquid–liquid interfaces. Langmuir 22:5227–5229

    Article  CAS  Google Scholar 

  50. Lin Y, Skaff H, Emrick F, Dinsmore A, Russell T (2003) Nanoparticle assembly and transport at liquid-liquid interfaces. Science 299:226–229

    Article  CAS  Google Scholar 

  51. Dai LL, Sharma R, Wu CW (2005) Self-assembled structure of nanoparticles at a liquid–liquid interface. Langmuir 21:2641–2643

    Article  CAS  Google Scholar 

  52. Gu H, Yang Z, Gao J, Zhang C, Xu B (2005) Heterodimers of nanoparticles: formation at a liquid–liquid interface and particle-specific surface modification by functional molecules. J Am Chem Soc 127:34–35

    Article  CAS  Google Scholar 

  53. Rao C, Kalyanikutty K (2008) The liquid-liquid interface as a medium to generate nanocrystalline films of inorganic materials. Acc Chem Res 41:489–499

    Article  CAS  Google Scholar 

  54. Zhang Y, Chen J (2014) Interface mechanism of a rapid and mild aqueous–organic method to prepare CePO4 nanostructures. Colloids Surf A Physicochem Eng 444:246–251

    Article  CAS  Google Scholar 

  55. Yang H, Wang W, Cui H, Zhang D, Liu Y, Chen J (2012) Recovery of rare earth elements from simulated fluorescent powder using bifunctional ionic liquid extractants (Bif-ILEs). J Chem Technol Biotechnol 87:198–205

    Article  CAS  Google Scholar 

  56. He M, Huang P, Zhang C, Chen F, Wang C, Ma J, He R, Cui D (2011) A general strategy for the synthesis of upconversion rare earth fluoride nanocrystals via a novel OA/ionic liquid two-phase system. Chem Commun 47:9510–9512

    Article  CAS  Google Scholar 

  57. He M, Huang P, Zhang C, Hu H, Bao C, He R, Cui D (2011) Dual phase-controlled synthesis of uniform lanthanide-doped NaGdF4 upconversion nanocrystals via an OA/ionic liquid two-phase system for in vivo dual-modality imaging. Adv Funct Mater 21:4470–4477

    Article  CAS  Google Scholar 

  58. Zhou N, Qiu P, Wang K, Fu H, Gao G, He R, Cui D (2013) Shape-controllable synthesis of hydrophilic NaLuF4:Yb, Er nanocrystals by a surfactant-assistant two-phase system. Nanoscale Res Lett 8:518

    Article  Google Scholar 

  59. He M, Huang P, Zhang C, Ma J, He R, Cui D (2013) Phase- and size-controllable synthesis of hexagonal upconversion rare-earth fluoride nanocrystals through an oleic acid/ionic liquid two-phase system. Chem Eur J 18:5954–5969

    Article  Google Scholar 

  60. Ju Q, Murdring AV (2013) Phase and morphology selective interface-assisted synthesis of highly luminescent Ln3+-doped NaGdF4 nanorods. RSC Adv 3:8172–8175

    Article  CAS  Google Scholar 

  61. Ju Q, Campbell PS, Murdring AV (2013) Interface-assisted ionothermal synthesis, phase tuning, surface modification and bioapplication of Ln3+-doped NaGdF4 nanocrystals. J Mater Chem B 1:179–185

    Article  CAS  Google Scholar 

  62. Sun Y, Zheng W (2010) Ultrathin SmVO4 nanosheets: Ionic liquid–assisted hydrothermal synthesis, characterization, formation mechanism and optical property. Dalton Trans 39:7098–7103

    Article  CAS  Google Scholar 

  63. Kowsari E, Faraghi G (2010) Synthesis by an ionic liquid-assisted method and optical properties of nanoflower Y2O3. Mater Res Bull 45:939–945

    Article  CAS  Google Scholar 

  64. Ghosh P, Tang S, Mudring AV (2011) Efficient quantum cutting in hexagonal NaGdF4:Eu3+ nanorods. J Mater Chem 21:8640–8644

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhua Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Song, Y., Deng, Y., Chen, J., Zou, H. (2016). Ionic Liquid-Assisted Hydrothermal Synthesis of Rare Earth Luminescence Materials. In: Chen, J. (eds) Application of Ionic Liquids on Rare Earth Green Separation and Utilization. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47510-2_9

Download citation

Publish with us

Policies and ethics