Skip to main content

Viscous Flow Behavior of Amorphous Ribbonlike Metallic Alloys Depending on Different Factors

  • Chapter
Glassy Metals

Abstract

An attempt has been made to provide an information about the experimental evidence, as obtained by the authors, for the existence of a definite interrelation between the viscous flow features and the chemical composition of binary metal-metal, metal-metalloid, ternary metal-metal-metalloid, and quaternary glassy alloys. The thermal prehistory of metallic glasses and the influence of technological conditions by rapid quenching from the melt are also considered. An estimation of the critical quenching rate and its reliability for predicting the glass transition will also be given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Russew K, Sommer F, Duhaj P, Bakonyi I (1992) Viscous flow behaviour of NixZr100-x metallic glasses from Ni30Zr70 to Ni64Zr36. J Mater Sci 27:3565

    Article  Google Scholar 

  2. Russew K, Stojanova L (1993) Viscous flow behaviour and thermal stability of Ni100-xPx metallic glasses from Ni84P16 to Ni79P21. Mater Lett 17:199

    Article  Google Scholar 

  3. Russew K, Anestiev L, Stojanova L et al (1995) Thermal stability and viscous flow behaviour of Fe100-xPx metallic glasses. J Mater Sci Technol 3(2):3

    Google Scholar 

  4. Russew K, Stojanova L, Anestiev L et al (1989) Influence of vanadium alloying additions on the viscous flow and critical cooling rate of amorphous Fe-B alloys. In: Proceedings of international conference on days of metallurgy’6 vol 1, Balatonaliga, 1989, p 118

    Google Scholar 

  5. Russew K, Sommer F, Stojanova L (1993) Influence of Cr-alloying additions on the viscous flow behaviour of Fe82-xCrxB18 amorphous alloy. In: Duhaj P, Mrafko P, Svec P (eds) Proceedings of conference on amorphous metallic materials AMM III. Trans Tech Publications, Slovakia, p 625

    Google Scholar 

  6. Stojanova L, Russew K, Fazakas E, Varga LK (2012) Thermo-mechanical study of rapidly solidified amorphous alloys Al85Ni5Co2RE8. J Alloys Compd 540:192

    Article  Google Scholar 

  7. Stojanova L, Russew K, Illekova E (1991) Study of the structural relaxation of Pd82Si18 metallic glass by thermal expansion and viscous flow measurements. Mater Sci Eng A133:529

    Article  Google Scholar 

  8. Russew K, Stojanova L, Koleva E (1989) Thermal pre-history and non-isothermal viscous flow of Fe40Ni40B20 glassy alloy. In: National conference metal science and heat treatment of metals’98. Scientific communications on STU machine building vol V, June 1998, p 80

    Google Scholar 

  9. Russew K, Stojanova L, Lovas A (1993) Effect of processing conditions on the ribbon geometry and viscous flow behaviour of Fe40Ni40Si6B14 amorphous alloy. Int J Rapid Solidif 8:147

    Google Scholar 

  10. Dong YD, Gregan G, Scott MG (1981) J Non-Cryst Solids 43:403

    Article  Google Scholar 

  11. Kolb-Teliens A, Shu-Song T (1988) J Non-Cryst Solids 107:122

    Article  Google Scholar 

  12. Araki T, Abe T, Tanaka K (1989) Mater Trans JIM 30:748

    Article  Google Scholar 

  13. Altounian Z, Strom-Olsen JO (1983) Phys Rev B 27:4149

    Article  Google Scholar 

  14. Sharma SK, Mukhopadhyay P (1990) Acta Metall Mater 38:129

    Article  Google Scholar 

  15. Fuqian Z et al (1988) Mater Sci Eng 97:487

    Article  Google Scholar 

  16. Altounian Z, Guo-hua T, Strom-Olsen JO (1983) J Appl Phys 54:3111

    Article  Google Scholar 

  17. Volkert CA, Spaepen F (1990) Scr Met Mater 24:463

    Article  Google Scholar 

  18. Kissinger HE (1957) Anal Chem 29:1702

    Article  Google Scholar 

  19. Kim C-O, Kim T-K, Takahashi M (1982) In: Masumoto T, Suzuki K (eds) Proceedings of conference on rapidly quenched metals RQ4 vol 1, Japan Institute of Metals, p 723

    Google Scholar 

  20. Sommer F (1981) Zs Metallkde 72:219

    Google Scholar 

  21. Takayama S (1976) J Mater Sci 11:164

    Article  Google Scholar 

  22. Greer AL (1982) Acta Metall 30:171

    Article  Google Scholar 

  23. Barfield RN, Kitchener JA (1955) J Iron Steel Inst 180:324

    Google Scholar 

  24. Wertmann AA, Samarin AM (1969) Properties of liquid iron alloys. Nauka, Moskow, p 208 (In Russian)

    Google Scholar 

  25. Uhlmann DR (1972) J Non-Cryst Solids 7:337

    Article  Google Scholar 

  26. Onorato PIK, Uhlmann DR (1976) J Non-Cryst Solids 22:367

    Article  Google Scholar 

  27. Myung WN et al (1991) Mater Sci Eng A133:513

    Article  Google Scholar 

  28. Inoue A, Yamamoto M, Kimura HM, Masumoto T (1987) J Mat Sci Lett 6:194

    Article  Google Scholar 

  29. Inoue A, Ohtera K, Tsai AP, Masumoto T (1988) Japn J Appl Phys 27:L479; L280; L1796

    Article  Google Scholar 

  30. He Y, Poon SY, Shiflet GJ (1988) Scr Met Mater 22:1813

    Article  Google Scholar 

  31. Sanders WS, Warner JS, Miracle DB (2006) Intermetal 14:348

    Article  Google Scholar 

  32. Fazakas E, Varga LK (2007) J Mater Sci Technol 15(4):211

    Google Scholar 

  33. Fazakas E, Varga LK (2008) Rev Adv Mater Sci 18:494

    Google Scholar 

  34. Michalik S, Bednarcik J, Jóvári P et al (2010) J Phys Condens Matter 22:404209. doi:10.1088/0953-8984/22/40/404209

    Article  Google Scholar 

  35. Taub AI, Spaepen F (1980) Acta Metall 28:1781

    Article  Google Scholar 

  36. Davies HA (1980) In: Duhaj P, Mrafko P (eds) Proceedings of conference on amorphous metallic materials’78. Veda Publication House, Bratislava, p 107

    Google Scholar 

  37. Ruhl RC (1967) Mater Sci Eng 1:313

    Article  Google Scholar 

  38. Patterson JP, Jones DRH (1980) Acta Metall 28:657

    Article  Google Scholar 

  39. Volkert CA, Spaepen F (1988) Mater Sci Eng 97:449

    Article  Google Scholar 

  40. Chen HS (1982) In: Masumoto T, Suzuki K (eds) Proceedings of conference on rapidly quenched metals RQ4 vol 1, Japan Institute of Metals, p 495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krassimir Russew .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Russew, K., Stojanova, L. (2016). Viscous Flow Behavior of Amorphous Ribbonlike Metallic Alloys Depending on Different Factors. In: Glassy Metals. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-47882-0_4

Download citation

Publish with us

Policies and ethics