Skip to main content

Radiocarbon Dating of Cremated Bones: An Overview

  • Chapter
Isotopic Landscapes in Bioarchaeology
  • 1101 Accesses

Abstract

One apatite contains a small amount of carbon that—in principle—is suitable for radiocarbon dating. Unfortunately, due to exchange mechanisms, the carbon in the apatite can be replaced by carbon with a different age. Incineration changes the crystallinity of the bone resulting in a protection against this exchange mechanism. In this way, it makes bones suitable for radiocarbon dating.

An important exchange in carbon however occurs during incineration.

During incineration, the apatite not only loses carbon but will also exchange carbon with the carbon dioxide in the pyre's atmosphere. In most cases, this will not result in an erroneous age, but exceptions do occur. Due to this process, the carbon stable isotope signal in cremated bones is not suitable anymore for dietary reconstruction.

To avoid wrong radiocarbon dates, the bones must be pretreated in an adequate way to remove all possible contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cerezo-Roman JI, McClelland JA (2009) Mortuary practices at Yuma Wash and the Hohokam Classic World. In: MacWilliams C, Dart A (eds) Archaeological investigations at five sites west of the Santa Cruz River in Marana, Arizona, vol 1. Old Pueblo Archaeology Center, Tucson, pp 1–22

    Google Scholar 

  • De Mulder G, Van Strydonck M, Boudin M (2004) 14C-dateringen op gecremeerde menselijk botten uit de urnenvelden te Velzeke (O.-Vl.). Lunula 12:51–58

    Google Scholar 

  • De Mulder G, Van Strydonck M, Boudin M, Leclercq W, Paridaens N, Warmenbol E (2007) Re-evaluation of the late bronze age and early iron age chronology of the Western Belgian Urnfields based on 14C dating of cremated bones. Radiocarbon 49:499–514

    Google Scholar 

  • De Mulder G, Van Strydonck M, Annaert R, Boudin M (2012) A Merovingian surprise: early medieval radiocarbon dates on cremated bone (Borsbeek, Belgium). Radiocarbon 54:581–588

    Google Scholar 

  • Harbeck M, Schleuder R, Schneider J, Wiechmann I, Schmahl WW, Grupe G (2011) Research potential and limitations of trace analyses of cremated remains. Forensic Sci Int 204:191–200

    Article  Google Scholar 

  • Hoefkens M (2004) Onderzoek naar de dateerbaar-heid van gecremeerde botten met 14C. Eindewerk voor het behalen van de graad en het diploma van Industrieel Ingenieur, De Nayer Instituut, St.-Katelijne Waver, p 92

    Google Scholar 

  • Hüls CM, Erlenkeuser H, Grootes PM, Andersen N (2010) Experimental study on the origin of cremated bone apatite carbon. Radiocarbon 52:587–599

    Google Scholar 

  • Kibby CL, Hall WK (1972) Surface properties of calcium phosphates. In: Hair ML (ed) The chemistry of biosurfaces, vol 2. Dekker, New York, pp 686–727

    Google Scholar 

  • Lanting JN, Brindley AL (1998) Dating cremated bone: the dawn of a new era. J Irish Archaeol 9:1–7

    Google Scholar 

  • Lanting JN, Aerts-Bijma AT, van der Plicht J (2001) Dating cremated bone. Radiocarbon 43:249–254

    Google Scholar 

  • Longin R (1971) New method of collagen extraction for radiocarbon analysis. Nature 230:241–242

    Article  Google Scholar 

  • MCKinley JI (1997) The cremated human bone from burials and cremation-related contexts. In: Fitzpatrick AP (ed) The iron age, Romano-British and Anglo-Saxon cemeteries excavated in 1992, vol 12. Trust for Wessex Archaeology, Salisbury, pp 55–72

    Google Scholar 

  • Molleson T (1990) The accumulation of trace metals during fossilization. In: Priest ND, Vandevyver FL (eds) Trace metals and fluoride in bones and teeth. CRC Press, Boca Raton, FL, pp 341–365

    Google Scholar 

  • Moskal-del Hoyo M (2012) The use of wood in funerary pyres: random gathering or special selection of species? Case study of three necropolises from Poland. J Archaeol Sci 39:3386–3395

    Article  Google Scholar 

  • Munro LE, Longstaffe FJ, White CD (2007) Burning and boiling of modern deer bone: effects on crystallinity and oxygen isotope composition of bioapatite phosphate. Palaeogeogr Palaeoclimatol Palaeoecol 249:90–102

    Article  Google Scholar 

  • Naysmith P, Scott EM, Cook GT, Heinemeier J, van der Plicht J, Van Strydonck M, Bronk Ramsey C, Grootes PM, Freeman SPHT (2007) A cremated bone intercomparison study. Radiocarbon 49:403–408

    Google Scholar 

  • Neuman WF (1980) Bone mineral and calcification mechanisms. In: Urist MR (ed) Fundamental and clinical bone physiology. JB Lippincott, Philadelphia, pp 83–107

    Google Scholar 

  • Neuman WF, Neuman NW (1958) The chemical dynamics of bone mineral. University of Chicago Press, Chicago, p 209

    Google Scholar 

  • Olsen J, Heinemeier J, Bennike P, Krause C, Hornstrup KM, Thrane H (2008) Characterisation and blind testing of radiocarbon dating of cremated bone. J Archaeol Sci 35:791–800

    Article  Google Scholar 

  • Pate FP, Hutton JT (1988) The use of soil chemistry data to address post-mortem diagenesis in bone mineral. J Archaeol Sci 15:729–739

    Article  Google Scholar 

  • Person A, Bocherens H, Saliège J-F, Paris F, Zeitoun V, Gérard M (1995) Early diagenetic evolution of bone phosphate: an X-ray diffractometry analysis. J Archaeol Sci 22:211–221

    Article  Google Scholar 

  • Petit i Mendizàbal ÀM (1989) Can Missert, una necropolis del Bronze Final al Vallès. Terme 4:7–11

    Google Scholar 

  • Saliège J-F, Person A, Paris F (1995) Preservation of 13C/12C original ratio and 14C dating of mineral fraction of human bones from Saharan tombs, Niger. J Archaeol Sci 22:301–312

    Article  Google Scholar 

  • Schiffer MB (1986) Radiocarbon dating and the “old wood” problem: the case of the Hohokam chronology. J Archaeol Sci 13:13–30

    Article  Google Scholar 

  • Shipman P, Foster GF, Schoeninger M (1984) Burnt bones and teeth: an experimental study of colour, morphology, crystal structure and shrinkage. J Archaeol Sci 11:307–325

    Article  Google Scholar 

  • Sillen A (1989) Diagenesis of the inorganic phase of cortical bone. In: Price TD (ed) The chemistry of prehistoric bone. Cambridge University Press, Cambridge, MA, pp 211–229

    Google Scholar 

  • Van Strydonck M (2014) From Myotragus to Metellus, a journey through the pre- and early-history of Majorca and Minorca. Librum, Hochwald (Switzerland, p 160

    Google Scholar 

  • Van Strydonck M, Nelson DE, Crombé P, Bronk Ramsey C, Scott E M, van der Plicht J, Hedges REM (1999) What’s in a 14C date. In: Evin J, Oberlin C, Daugas J-P, Salles J-F (eds) 3rd International symposium 14C and archaeology, Mémoires de la Société Préhistorique Française 26, Supplément de la Revue d’Archéométrie, pp 433–448

    Google Scholar 

  • Van Strydonck M, Boudin M, Hoefkens M, De Mulder G (2005) 14C-dating of cremated bones, why does it work? Lunula 13:3–10

    Google Scholar 

  • Van Strydonck M, Boudin M, De Mulder G (2009) 14C dating of cremated bones: the issue of sample contamination. Radiocarbon 51:553–568

    Google Scholar 

  • Van Strydonck M, Boudin M, Guerrero-Ayuso VM, Calvo M, Fullola JM, Àngeles Petit M (2010a) The necessity of sample quality assessment in 14C AMS dating: the case of Cova des Pas (Menorca–Spain). Nucl Instr Meth Phys Res B 268:990–994

    Article  Google Scholar 

  • Van Strydonck M, Boudin M, De Mulder G (2010b) The origin of the carbon in bone apatite of cremated bones. Radiocarbon 52:578–586

    Google Scholar 

  • Van Strydonck M, Decq L, Van den Brande T, Boudin M, Ramis D, Borms H, De Mulder G (2013) Int J Osteoarch. doi:10.1002/oa.2307

    Google Scholar 

  • Wright LE, Schwarcz HP (1996) Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–944

    Article  Google Scholar 

  • Zazzo A, Saliège J-F (2011) Radiocarbon dating of biological apatites: a review. Palaeogeogr Palaeoclimatol Palaeoecol 310:52–61

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Van Strydonck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Van Strydonck, M. (2016). Radiocarbon Dating of Cremated Bones: An Overview. In: Grupe, G., McGlynn, G. (eds) Isotopic Landscapes in Bioarchaeology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48339-8_4

Download citation

Publish with us

Policies and ethics