Skip to main content

Neuronavigation im Kindesalter

  • Chapter
  • First Online:
Pädiatrische Neurochirurgie
  • 4622 Accesses

Zusammenfassung

Die Neuronavigation ist zu einer wichtigen Voraussetzung für viele kinderneurochirurgische Eingriffe geworden. Verschiedene Systeme, wie die optische oder elektromagnetische Navigation, sind verfügbar. Die Verbindung mit der intraoperativen Bildgebung wie dem MRT oder dem Ultraschall können den „Brain Shift“, der während der Operation auftreten kann, berücksichtigen und einen neuen Datensatz zur weiteren Navigation zur Verfügung stellen. Indikationen zum Einsatz der Navigation sind vielseitig und beinhalten z. B. die Platzierung von Ventrikelkathetern, neuroendoskopische Eingriffe, Tumorresektionen, Biopsien und die Epilepsiechirurgie.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Acosta FL, Jr., Quinones-Hinojosa A, Gadkary CA et al. (2005) Frameless stereotactic image-guided C1–C2 transarticular screw fixation for atlantoaxial instability: review of 20 patients. J Spinal Disord Tech 18(5):385–391

    PubMed  Google Scholar 

  • Akdemir H, Oktem S, Menku A, Tucer B, Tugcu B, Gunaldi O (2007) Image-guided microneurosurgical management of small arteriovenous malformation: role of neuronavigation and intraoperative Doppler sonography. Minim Invasive Neurosurg 50(3):163–169

    CAS  PubMed  Google Scholar 

  • Al-Mefty O, Kadri PA, Hasan DM, Isolan GR, Pravdenkova S (2008) Anterior clivectomy: surgical technique and clinical applications. J Neurosurg 109(5):783–793

    PubMed  Google Scholar 

  • Almenawer SA, Crevier L, Murty N, Kassam A, Reddy K (2013) Minimal access to deep intracranial lesions using a serial dilatation technique: case-series and review of brain tubular retractor systems. Neurosurg Rev 36(2):321–329; discussion 329–330

    PubMed  Google Scholar 

  • Alotaibi N, Hanss J, Benoudiba F, Bobin S, Racy E (2013) Endoscopic removal of large orbito-ethmoidal osteoma in pediatric patient: Case report. Int J Surg Case Rep 4(12):1067–1070

    PubMed  PubMed Central  Google Scholar 

  • Avula S, Mallucci CL, Pizer B, Garlick D, Crooks D, Abernethy LJ (2012) Intraoperative 3-Tesla MRI in the management of paediatric cranial tumours – initial experience. Pediatr Radiol 42(2):158–167

    PubMed  Google Scholar 

  • Azeem SS, Origitano TC (2007) Ventricular catheter placement with a frameless neuronavigational system: a 1-year experience. Neurosurgery 60(4 Suppl 2): 243–247; discussion 247–248

    PubMed  Google Scholar 

  • Barszcz S, Roszkowski M, Daszkiewicz P, Jurkiewicz E, Maryniak A (2007) Accuracy of intraoperative registration during electromagnetic neuronavigation in intracranial procedures performed in children. Neurol Neurochir Pol 41(2):122–127

    PubMed  Google Scholar 

  • Benifla M, Sala F, Jr., Jane J et al. (2009) Neurosurgical management of intractable rolandic epilepsy in children: role of resection in eloquent cortex. Clinical article. J Neurosurg Pediatr 4(3):199–216

    PubMed  Google Scholar 

  • Cavalheiro S, Di Rocco C, Valenzuela S et al. (2010) Craniopharyngiomas: intratumoral chemotherapy with interferon-alpha: a multicenter preliminary study with 60 cases. Neurosurg Focus 28(4):E12

    PubMed  Google Scholar 

  • Centeno RS, Yacubian EM, Sakamoto AC, Ferraz AF, Junior HC, Cavalheiro S (2006) Pre-surgical evaluation and surgical treatment in children with extratemporal epilepsy. Childs Nerv Syst 22(8):945–959

    PubMed  Google Scholar 

  • Chandra PS, Padma VM, Shailesh G, Chandreshekar B, Sarkar C, Tripathi M (2008) Hemispherotomy for intractable epilepsy. Neurol India 56(2):127–132

    PubMed  Google Scholar 

  • Cho DY, Lee WY, Lee HC, Chen CC, Tso M (2005) Application of neuronavigator coupled with an operative microscope and electrocorticography in epilepsy surgery. Surg Neurol 64(5):411–417; discussion 417–418

    PubMed  Google Scholar 

  • Choi KY, Seo BR, Kim JH, Kim SH, Kim TS, Lee JK (2013) The usefulness of electromagnetic neuronavigation in the pediatric neuroendoscopic surgery. J Korean Neurosurg Soc 53(3):161–166

    PubMed  PubMed Central  Google Scholar 

  • Coburger J, Musahl C, Henkes H et al. (2013) Comparison of navigated transcranial magnetic stimulation and functional magnetic resonance imaging for preoperative mapping in rolandic tumor surgery. Neurosurg Rev 36(1):65–75; discussion 75–66

    PubMed  Google Scholar 

  • Coelho G, Kondageski C, Vaz-Guimaraes Filho F et al. (2011) Frameless image-guided neuroendoscopy training in real simulators. Minim Invasive Neurosurg 54(3):115–118

    CAS  PubMed  Google Scholar 

  • Dasenbrock HH, Clarke MJ, Bydon A et al. (2012) Endoscopic image-guided transcervical odontoidectomy: outcomes of 15 patients with basilar invagination. Neurosurgery 70(2):351–359; discussion 359–360

    PubMed  Google Scholar 

  • Di Rocco F, Oi S, Samii A et al. (2007) Neuronavigational endoscopic endonasal sellar and parasellar surgery using a 2-mm-diameter lens rigid-rod endoscope: a cadaver study. Neurosurgery 60(4 Suppl 2):394–400; discussion 400

    PubMed  Google Scholar 

  • Di X (2007) Multiple brain tumor nodule resections under direct visualization of a neuronavigated endoscope. Minim Invasive Neurosurg 50(4):227–232

    CAS  PubMed  Google Scholar 

  • Enchev YP, Popov RV, Romansky KV, Marinov MB, Bussarsky VA (2008) Neuronavigated surgery of intracranial cavernomas – enthusiasm for high technologies or a gold standard? Folia Medica 50(2):11–17

    PubMed  Google Scholar 

  • Ersahin M, Karaaslan N, Gurbuz MS et al. (2011) The safety and diagnostic value of frame-based and CT-guided stereotactic brain biopsy technique. Turk Neurosurg 21(4):582–590

    PubMed  Google Scholar 

  • Esposito V, Paolini S, Morace R et al. (2008) Intraoperative localization of subcortical brain lesions. Acta Neurochir 150(6):537–542; discussion 543

    CAS  PubMed  Google Scholar 

  • Fei Z, Zhang X, Jiang XF, Liu WP, Wang XL, Xie L (2007) Removal of large benign cephalonasal tumours by transbasal surgery combined with endonasal endoscopic sinus surgery and neuronavigation. J Craniomaxillofac Surg 35(1):30–34

    PubMed  Google Scholar 

  • Floeth FW, Pauleit D, Wittsack HJ et al. (2005) Multimodal metabolic imaging of cerebral gliomas: positron emission tomography with [18F]fluoroethyl-L-tyrosine and magnetic resonance spectroscopy. J Neurosurg 102(2):318–327

    PubMed  Google Scholar 

  • Franz MO, Mallot HA (2000) Biometric robot navigation. Robotics and Autonomous Systems 30:133–153

    Google Scholar 

  • Fronda C, Miller D, Kappus C, Bertalanffy H, Sure U (2008) The benefit of image guidance for the contralateral interhemispheric approach to the lateral ventricle. Clin Neurol Neurosurg 110(6):580–586

    PubMed  Google Scholar 

  • Giese H, Hoffmann KT, Winkelmann A, Stockhammer F, Jallo GI, Thomale UW (2010) Precision of navigated stereotactic probe implantation into the brainstem. J Neurosurg Pediatr 5(4):350–359

    PubMed  Google Scholar 

  • Gralla J, Nimsky C, Buchfelder M, Fahlbusch R, Ganslandt O (2003a) Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir 64(4):166–170

    CAS  PubMed  Google Scholar 

  • Gralla J, Ganslandt O, Kober H, Buchfelder M, Fahlbusch R, Nimsky C (2003b) Image-guided removal of supratentorial cavernomas in critical brain areas: application of neuronavigation and intraoperative magnetic resonance imaging. Minim Invasive Neurosurg 46(2):72–77

    CAS  PubMed  Google Scholar 

  • Gupta N, Berger MS (2003) Brain mapping for hemispheric tumors in children. Pediatr Neurosurg 38(6):302–306

    PubMed  Google Scholar 

  • Hayhurst C, Beems T, Jenkinson MD et al. (2010) Effect of electromagnetic-navigated shunt placement on failure rates: a prospective multicenter study. J Neurosurg 113(6):1273–1278

    PubMed  Google Scholar 

  • Hermann EJ, Capelle HH, Tschan CA, Krauss JK (2012). Electromagnetic-guided neuronavigation for safe placement of intraventricular catheters in Pediatr Neurosurg. J Neurosurg Pediatr 10(4):327–333

    PubMed  Google Scholar 

  • Heussinger N, Eyupoglu IY, Ganslandt O, Finzel S, Trollmann R, Jungert J (2013) Ultrasound-guided neuronavigation improves safety of ventricular catheter insertion in preterm infants. Brain Dev 35(10):905–911

    PubMed  Google Scholar 

  • Hott JS, Papadopoulos SM, Theodore N, Dickman CA, Sonntag VK (2004a) Intraoperative Iso-C C-arm navigation in cervical spinal surgery: review of the first 52 cases. Spine 29(24):2856–2860

    PubMed  Google Scholar 

  • Hott JS, Deshmukh VR, Klopfenstein JD et al. (2004b) Intraoperative Iso-C C-arm navigation in craniospinal surgery: the first 60 cases. Neurosurgery 54(5):1131–1136; discussion 1136–1137

    PubMed  Google Scholar 

  • Ibrahim AA, Magdy EA, Eid M (2012) Endoscopic endonasal multilayer repair of traumatic ethmoidal roof cerebrospinal fluid rhinorrhea in children. Int J Pediatr Otorhinolaryngol 76(4):523–529

    PubMed  Google Scholar 

  • Jagannathan J, Prevedello DM, Ayer VS, Dumont AS, Jane JA, Jr., Laws ER (2006) Computer-assisted frameless stereotaxy in transsphenoidal surgery at a single institution: review of 176 cases. Neurosurg Focus 20(2):E9

    PubMed  Google Scholar 

  • Jea A, Vachhrajani S, Johnson KK, Rutka JT (2008) Corpus callosotomy in children with intractable epilepsy using frameless stereotactic neuronavigation: 12-year experience at the Hospital for Sick Children in Toronto. Neurosurg Focus 25(3):E7

    PubMed  Google Scholar 

  • Jo KW, Shin HJ, Nam DH et al. (2011a) Efficacy of endoport-guided endoscopic resection for deep-seated brain lesions. Neurosurg Rev 34(4):457–463

    PubMed  Google Scholar 

  • Jo KI, Chung SB, Jo KW, Kong DS, Seol HJ, Shin HJ (2011b) Microsurgical resection of deep-seated lesions using transparent tubular retractor: pediatric case series. Childs Nerv Syst 27(11):1989–1994

    PubMed  Google Scholar 

  • Kanno H, Ozawa Y, Sakata K et al. (2005) Intraoperative power Doppler ultrasonography with a contrast-enhancing agent for intracranial tumors. J Neurosurg 102(2):295–301

    PubMed  Google Scholar 

  • Kaya S, Deniz S, Duz B, Daneyemez M, Gonul E (2012) Use of an ultra-low field intraoperative MRI system for pediatric brain tumor cases: initial experience with 'PoleStar N20'. Turk Neurosurg 22(2):218–225

    PubMed  Google Scholar 

  • Kinoshita M, Yamada K, Hashimoto N et al. (2005) Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage 25(2):424–429

    PubMed  Google Scholar 

  • Kosnik-Infinger L, Glazier SS, Frankel BM (2013) Occipital condyle to cervical spine fixation in the pediatric population. J Neurosurg Pediatr 13(1):45–53

    PubMed  Google Scholar 

  • Kral F, Puschban EJ, Riechelmann H, Freysinger W (2013) Comparison of optical and electromagnetic tracking for navigated lateral skull base surgery. Int J Med Robot 9(2):247–252

    PubMed  Google Scholar 

  • Kremer P, Tronnier V, Steiner HH et al. (2006) Intraoperative MRI for interventional neurosurgical procedures and tumor resection control in children. Childs Nerv Syst 22(7):674–678

    PubMed  Google Scholar 

  • Levitt MR, O'Neill BR, Ishak GE et al. (2012) Image-guided cerebrospinal fluid shunting in children: catheter accuracy and shunt survival. J Neurosurg Pediatr 10(2):112–117

    PubMed  Google Scholar 

  • Levy R, Cox RG, Hader WJ, Myles T, Sutherland GR, Hamilton MG (2009) Application of intraoperative high-field magnetic resonance imaging in Pediatr Neurosurg. J Neurosurg Pediatr 4(5):467–474

    PubMed  Google Scholar 

  • Lobao CA, Nogueira J, Souto AA, Oliveira JA (2009) Cerebral biopsy: comparison between frame-based stereotaxy and neuronavigation in an oncology center. Arq Neuropsiquiatr 67(3B):876–881

    PubMed  Google Scholar 

  • Lunsford LD, Khan AA, Niranjan A, Kano H, Flickinger JC, Kondziolka D (2010) Stereotactic radiosurgery for symptomatic solitary cerebral cavernous malformations considered high risk for resection. J Neurosurg 113(1):23–29

    PubMed  Google Scholar 

  • McGirt MJ, Woodworth GF, Coon AL et al. (2005) Independent predictors of morbidity after image-guided stereotactic brain biopsy: a risk assessment of 270 cases. J Neurosurg 102(5):897–901

    PubMed  Google Scholar 

  • Messing-Junger AM, Floeth FW, Pauleit D et al. (2002) Multimodal target point assessment for stereotactic biopsy in children with diffuse bithalamic astrocytomas. Childs Nerv Syst 18(8):445–449

    CAS  PubMed  Google Scholar 

  • Modi HN, Suh SW, Fernandez H, Yang JH, Song HR (2008) Accuracy and safety of pedicle screw placement in neuromuscular scoliosis with free-hand technique. Eur Spine J 17(12):1686–1696

    PubMed  PubMed Central  Google Scholar 

  • Modi H, Suh SW, Song HR, Yang JH (2009) Accuracy of thoracic pedicle screw placement in scoliosis using the ideal pedicle entry point during the freehand technique. Int Orthop 33(2):469–475

    PubMed  Google Scholar 

  • Ng YT, Rekate HL, Prenger EC et al. (2008) Endoscopic resection of hypothalamic hamartomas for refractory symptomatic epilepsy. Neurology 70(17):1543–1548

    PubMed  Google Scholar 

  • Ng WH, Mukhida K, Rutka JT (2010) Image guidance and neuromonitoring in neurosurgery. Childs Nerv Syst 26(4):491–502

    PubMed  Google Scholar 

  • Nimsky C, Buchfelder M (2003) Neuronavigation in epilepsy surgery. Arq Neuropsiquiatr 61 Suppl 1:109–114

    PubMed  Google Scholar 

  • Nimsky C, Ganslandt O, Gralla J, Buchfelder M, Fahlbusch R (2003) Intraoperative low-field magnetic resonance imaging in Pediatr Neurosurg. Pediatr Neurosurg 38(2):83–89

    PubMed  Google Scholar 

  • Ochi A, Otsubo H (2008) Magnetoencephalography-guided epilepsy surgery for children with intractable focal epilepsy: SickKids experience. Int J Psychophysiol 68(2):104–110

    PubMed  Google Scholar 

  • Oertel J, Gaab MR, Runge U, Schroeder HW, Wagner W, Piek J (2004) Neuronavigation and complication rate in epilepsy surgery. Neurosurg Rev 27(3):214–217

    PubMed  Google Scholar 

  • Owen CM, Linskey ME (2009) Frame-based stereotaxy in a frameless era: current capabilities, relative role, and the positive- and negative predictive values of blood through the needle. J Neurooncol 93(1):139–149

    PubMed  Google Scholar 

  • Park YS, Lee YH, Shim KW et al. (2009) Insular epilepsy surgery under neuronavigation guidance using depth electrode. Childs Nerv Syst 25(5):591–597

    PubMed  Google Scholar 

  • Pirotte B, Goldman S, Van Bogaert P et al. (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57(1 Suppl):128–139; discussion 128–139

    PubMed  Google Scholar 

  • Pirotte B, Lubansu A, Massager N et al. (2010) Clinical impact of integrating positron emission tomography during surgery in 85 children with brain tumors. J Neurosurg Pediatr 5(5):486–499

    PubMed  Google Scholar 

  • Polkey CE (2003) Resective surgery for hypothalamic hamartoma. Epileptic Disord 5(4):281–286

    PubMed  Google Scholar 

  • Polkey CE (2004) Clinical outcome of epilepsy surgery. Curr Opin Neurol 17(2):173–178

    PubMed  Google Scholar 

  • Qiao L, Xue T, Zha DJ et al. (2011) Determining leak locations during transnasal endoscopic repair of cerebrospinal fluid rhinorrhea. Auris Nasus Larynx 38(3):335–339

    PubMed  Google Scholar 

  • Qiu TM, Zhang Y, Wu JS et al. (2010) Virtual reality presurgical planning for cerebral gliomas adjacent to motor pathways in an integrated 3-D stereoscopic visualization of structural MRI and DTI tractography. Acta Neurochir 152(11):1847–1857

    PubMed  Google Scholar 

  • Reavey-Cantwell JF, Bova FJ, Pincus DW (2006) Frameless, pinless stereotactic neurosurgery in children. J Neurosurg 104(6 Suppl):392–395

    PubMed  Google Scholar 

  • Recinos PF, Raza SM, Jallo GI, Recinos VR (2011) Use of a minimally invasive tubular retraction system for deep-seated tumors in pediatric patients. J Neurosurg Pediatr 7(5):516–521

    PubMed  Google Scholar 

  • Reig AS, Stevenson CB, Tulipan NB (2010) CT-based, fiducial-free frameless stereotaxy for difficult ventriculoperitoneal shunt insertion: experience in 26 consecutive patients. Stereotact Funct Neurosurg 88(2):75–80

    PubMed  Google Scholar 

  • Ren H, Chen X, Sun G et al. (2013) Resection of subependymal giant cell astrocytoma guided by intraoperative magnetic resonance imaging and neuronavigation. Childs Nerv Syst 29(7):1113–1121

    PubMed  Google Scholar 

  • Rohde V, Behm T, Ludwig H, Wachter D (2012) The role of neuronavigation in intracranial endoscopic procedures. Neurosurg Rev 35(3):351–358

    PubMed  Google Scholar 

  • Rohde V, Spangenberg P, Mayfrank L, Reinges M, Gilsbach JM, Coenen VA (2005) Advanced neuronavigation in skull base tumors and vascular lesions. Minim Invasive Neurosurg 48(1):13–18

    CAS  PubMed  Google Scholar 

  • Roth J, Biyani N, Beni-Adani L, Constantini S (2007) Real-time neuronavigation with high-quality 3D ultrasound SonoWand in Pediatr Neurosurg. Pediatr Neurosurg 43(3):185–191

    PubMed  Google Scholar 

  • Sadda P, Azimi E, Jallo G, Doswell J, Kazanzides P (2013) Surgical navigation with a head-mounted tracking system and display. Stud Health Technol Inform 184:363–369

    PubMed  Google Scholar 

  • Samdani A, Jallo GI (2007) Intraoperative MRI: technology, systems, and application to pediatric brain tumors. Surg Technol Int 16:236–243

    PubMed  Google Scholar 

  • Schicho K, Figl M, Seemann R et al. (2007) Comparison of laser surface scanning and fiducial marker-based registration in frameless stereotaxy. Technical note. J Neurosurg 106(4):704–709

    PubMed  Google Scholar 

  • Schlaier J, Warnat J, Brawanski A (2002) Registration accuracy and practicability of laser-directed surface matching. Comput Aided Surg 7(5):284–290

    CAS  PubMed  Google Scholar 

  • Schulz M, Bohner G, Knaus H, Haberl H, Thomale UW (2010) Navigated endoscopic surgery for multiloculated hydrocephalus in children. J Neurosurg Pediatr 5(5):434–442

    PubMed  Google Scholar 

  • Shirane R, Kumabe T, Yoshida Y et al. (2001) Surgical treatment of posterior fossa tumors via the occipital transtentorial approach: evaluation of operative safety and results in 14 patients with anterosuperior cerebellar tumors. J Neurosurg 94(6):927–935

    CAS  PubMed  Google Scholar 

  • Spalice A, Ruggieri M, Grosso S et al. (2010) Dysembryoplastic neuroepithelial tumors: a prospective clinicopathologic and outcome study of 13 children. Pediatric neurology 43(6):395–402

    PubMed  Google Scholar 

  • Stefan H, Nimsky C, Scheler G et al. (2007) Periventricular nodular heterotopia: A challenge for epilepsy surgery. Seizure 16(1):81–86

    CAS  PubMed  Google Scholar 

  • Stieglitz LH, Giordano M, Samii M, Luedemann WO (2010) A new tool for frameless stereotactic placement of ventricular catheters. Neurosurgery 67(3 Suppl Operative):ons131–135; discussion ons135

    Google Scholar 

  • Stone SS, Rutka JT (2008) Utility of neuronavigation and neuromonitoring in epilepsy surgery. Neurosurg Focus 25(3):E17

    PubMed  Google Scholar 

  • Surbeck W, Bouthillier A, Weil AG et al. (2011) The combination of subdural and depth electrodes for intracranial EEG investigation of suspected insular (perisylvian) epilepsy. Epilepsia 52(3):458–466

    PubMed  Google Scholar 

  • Thomale UW, Knitter T, Schaumann A et al. (2013) Smartphone-assisted guide for the placement of ventricular catheters. Childs Nerv Syst 29(1):131–139

    CAS  PubMed  Google Scholar 

  • Thompson EM, Anderson GJ, Roberts CM, Hunt MA, Selden NR (2011) Skull-fixated fiducial markers improve accuracy in staged frameless stereotactic epilepsy surgery in children. J Neurosurg Pediatr 7(1):116–119

    PubMed  Google Scholar 

  • Tirakotai W, Riegel T, Sure U, Bozinov O, Hellwig D, Bertalanffy H (2004) Clinical application of neuro-navigation in a series of single burr-hole procedures. Zentralbl Neurochir 65(2):57–64

    CAS  PubMed  Google Scholar 

  • Tovar-Spinoza ZS, Ochi A, Rutka JT, Go C, Otsubo H (2008) The role of magnetoencephalography in epilepsy surgery. Neurosurg Focus 25(3):E16

    PubMed  Google Scholar 

  • Tsioulos K, Del Pero MM, Philpott C (2013) Pneumatisation of turbinates and paranasal sinuses in children: case report. J Laryngol Otol 127(4):419–422

    CAS  PubMed  Google Scholar 

  • Tuominen J, Yrjana SK, Katisko JP, Heikkila J, Koivukangas J (2003) Intraoperative imaging in a comprehensive neuronavigation environment for minimally invasive brain tumour surgery. Acta Neurochir. Supplement 85:115–120

    CAS  Google Scholar 

  • Turner MS, Nguyen HS, Payner TD, Cohen-Gadol AA (2011) A novel method for stereotactic, endoscope-assisted transtentorial placement of a shunt catheter into symptomatic posterior fossa cysts. J Neurosurg Pediatr 8(1):15–21

    PubMed  Google Scholar 

  • Ulrich NH, Burkhardt JK, Serra C, Bernays RL, Bozinov O (2012) Resection of pediatric intracerebral tumors with the aid of intraoperative real-time 3-D ultrasound. Childs Nerv Syst 28(1):101–109

    PubMed  Google Scholar 

  • Van Gompel JJ, Meyer FB, Marsh WR, Lee KH, Worrell GA (2010) Stereotactic electroencephalography with temporal grid and mesial temporal depth electrode coverage: does technique of depth electrode placement affect outcome? J Neurosurg 113(1):32–38

    PubMed  PubMed Central  Google Scholar 

  • van Lindert EJ, Ingels K, Mylanus E, Grotenhuis JA (2010) Variations of endonasal anatomy: relevance for the endoscopic endonasal transsphenoidal approach. Acta Neurochir 152(6):1015–1020

    PubMed  Google Scholar 

  • M, Della Pepa GM, Doglietto F, Esposito G, La Rocca G, Massimi L (2011a) Video-assisted microsurgical transoral approach to the craniovertebral junction: personal experience in childhood. Childs Nerv Syst 27(5):825–831

    PubMed  Google Scholar 

  • M, Doglietto F, Della Pepa GM et al. (2011b) Endoscope-assisted microsurgical transoral approach to the anterior craniovertebral junction compressive pathologies. Eur Spine J 20(9):1518–1525

    PubMed  PubMed Central  Google Scholar 

  • Vitaz TW, Hushek S, Shields CB, Moriarty T (2003) Intraoperative MRI for pediatric tumor management. Acta Neurochir. Supplement 85:73–78

    CAS  Google Scholar 

  • von Lehe M, Wellmer J, Urbach H, Schramm J, Elger CE, Clusmann H (2009) Epilepsy surgery for insular lesions. Rev Neurol 165(10):755–761

    Google Scholar 

  • Wagner W, Gaab MR, Schroeder HW, Sehl U, Tschiltschke W (1999) Experiences with cranial neuronavigation in Pediatr Neurosurg. Pediatr Neurosurg 31(5):231–236

    CAS  PubMed  Google Scholar 

  • Winkler D, Trantakis C, Lindner D, Richter A, Schober J, Meixensberger J (2003) Improving planning procedure in brain biopsy: coupling frame-based stereotaxy with navigational device STP 4.0. Minim Invasive Neurosurg 46(1):37–40

    CAS  PubMed  Google Scholar 

  • Winkler D, Lindner D, Richter A, Meixensberger J, Schober J (2006a) The value of intraoperative smear examination of stereotaxic brain specimens. Minim Invasive Neurosurg 49(6):353–356

    CAS  PubMed  Google Scholar 

  • Winkler D, Lindner D, Strauss G, Richter A, Schober R, Meixensberger J (2006b) Surgery of cavernous malformations with and without navigational support – a comparative study. Minim Invasive Neurosurg 49(1):15–19

    CAS  PubMed  Google Scholar 

  • Woodworth GF, McGirt MJ, Elfert P, Sciubba DM, Rigamonti D (2005) Frameless stereotactic ventricular shunt placement for idiopathic intracranial hypertension. Stereotact Funct Neurosurg 83(1):12–16

    PubMed  Google Scholar 

  • Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD (2006) Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg 104(2):233–237

    PubMed  Google Scholar 

  • Wray CD, Kraemer DL, Yang T et al. (2011) Freehand placement of depth electrodes using electromagnetic frameless stereotactic guidance. J Neurosurg Pediatr 8(5):464–467

    PubMed  Google Scholar 

  • Wurm G, Fellner FA (2004) Implementation of T2*-weighted MR for multimodal image guidance in cerebral cavernomas. NeuroImage 22(2):841–846

    PubMed  Google Scholar 

  • Yousaf J, Avula S, Abernethy LJ, Mallucci CL (2012) Importance of intraoperative magnetic resonance imaging for pediatric brain tumor surgery. Surg Neurol Int 3(Suppl 2):S65–72

    Google Scholar 

  • Zhu FP, Wu JS, Song YY et al. (2012) Clinical application of motor pathway mapping using diffusion tensor imaging tractography and intraoperative direct subcortical stimulation in cerebral glioma surgery: a prospective cohort study. Neurosurgery 71(6):1170–1183; discussion 1183–1174

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U.-W. Thomale .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag Berlin Heidelberg

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thomale, UW. (2018). Neuronavigation im Kindesalter. In: Bächli, H., Lütschg, J., Messing-Jünger, M. (eds) Pädiatrische Neurochirurgie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-48700-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-48700-6_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-48699-3

  • Online ISBN: 978-3-662-48700-6

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics