Skip to main content

Single-Cell Genomics and Epigenomics

  • Chapter
  • First Online:
Essentials of Single-Cell Analysis

Part of the book series: Series in BioEngineering ((SERBIOENG))

  • 2335 Accesses

Abstract

The cell is the fundamental unit of life, in which the blueprint of the genome is transcribed and translated into biological function. Most of our current understanding of the genome, epigenome, and transcriptome is based on analysis of millions of cells as a bulk population. These analyses are highly informative but they do not provide information about the heterogeneity and molecular dynamics that occur within a population of cells, nor any information about an underrepresented cell subpopulation that could have a differential or crucial function in a specific biological context. Thus, single cell analysis is, without doubt, an invaluable approach to understand fundamental biology in embryonic development, normal organs, and disease. Improvements in techniques for the isolation of single cells, whole genome or transcriptome amplification, and genome-wide analysis platforms have allowed high-resolution analysis of the genome and transcriptome, and also have potential to reveal the epigenome map of one cell. In particular, the rapid advances in next-generation sequencing technologies are raising new methodologies in these areas allowing sequencing of the small amounts of DNA and RNA present in single cells. The integration of the knowledge from different types of single cell “omics” datasets will revolutionize the way we understand whole-organism science and will have high impact on both basic biological research and medicine. For example, a combination of single-cell “omics” datasets will be applied to reveal important biological insights, such as: a detailed cell lineage tree in higher organisms; a deep understanding of embryonic development from one single cell onwards; and a dissection of tumor heterogeneity. Integration of genomics and transcriptomics in single cancer cells will also provide valuable information about the functional consequences of mutations and copy number variations in these cells. In this chapter, we first review the major technological developments achieved in single cell “omics” as well as the technical challenges to overcome and the potential of future developments. We then describe the impact that these methods would have on normal development and disease and their potential applications. Finally, we discuss our vision of the future developments and breakthroughs of single cell “omics” with a special focus on the integration of all these methods to understand whole-organism biology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adey A, Morrison HG, Asan et al (2010) Rapid, low-input, low-bias construction of shotgun fragment libraries by high-density in vitro transposition. Genome Biol 11:R119

    Google Scholar 

  2. Alfarawati S, Fragouli E, Colls P et al (2011) First births after preimplantation genetic diagnosis of structural chromosome abnormalities using comparative genomic hybridization and microarray analysis. Hum Reprod 26:1560–1574

    Article  Google Scholar 

  3. Altarescu G, Zeevi DA, Zeligson S et al (2013) Familial haplotyping and embryo analysis for Preimplantation genetic diagnosis (PGD) using DNA microarrays: a proof of principle study. J Assist Reprod Genet 30:1595–1603

    Article  Google Scholar 

  4. Arendt D (2008) The evolution of cell types in animals: emerging principles from molecular studies. Nat Rev Genet 9:868–882

    Article  Google Scholar 

  5. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  Google Scholar 

  6. Baslan T, Kendall J, Rodgers L et al (2012) Genome-wide copy number analysis of single cells. Nat Protoc 7:1024–1041

    Article  Google Scholar 

  7. Booth MJ, Branco MR, Ficz G et al (2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine at single-base resolution. Science 336:934–937

    Article  Google Scholar 

  8. Branton D, Deamer DW, Marziali A et al (2008) The potential and challenges of nanopore sequencing. Nat Biotechnol 26:1146–1153

    Article  Google Scholar 

  9. Brennecke P, Anders S, Kim JK et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095

    Article  Google Scholar 

  10. Brind’amour J, Liu S, Hudson M et al (2015) An ultra-low-input native ChIP-seq protocol for genome-wide profiling of rare cell populations. Nat Commun 6:6033

    Article  Google Scholar 

  11. Chen L, Kostadima M, Martens JH et al (2014) Transcriptional diversity during lineage commitment of human blood progenitors. Science 345:1251033

    Article  Google Scholar 

  12. Cheung VG, Nelson SF (1996) Whole genome amplification using a degenerate oligonucleotide primer allows hundreds of genotypes to be performed on less than one nanogram of genomic DNA. Proc Natl Acad Sci USA 93:14676–14679

    Article  Google Scholar 

  13. Chi KR (2014) Singled out for sequencing. Nat Methods 11:13–17

    Article  Google Scholar 

  14. Chiba H, Hiura H, Okae H et al (2013) DNA methylation errors in imprinting disorders and assisted reproductive technology. Pediatr Int 55:542–549

    Article  Google Scholar 

  15. Chimonidou M, Strati A, Tzitzira A et al (2011) DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clin Chem 57:1169–1177

    Article  Google Scholar 

  16. Coupland P, Chandra T, Quail M et al (2012) Direct sequencing of small genomes on the Pacific Biosciences RS without library preparation. Biotechniques 53:365–372

    Article  Google Scholar 

  17. Czyz ZT, Hoffmann M, Schlimok G et al (2014) Reliable single cell array CGH for clinical samples. PLoS ONE 9:e85907

    Article  Google Scholar 

  18. De Wit E, De Laat W (2012) A decade of 3C technologies: insights into nuclear organization. Genes Dev 26:11–24

    Article  Google Scholar 

  19. Dean FB, Hosono S, Fang L et al (2002) Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99:5261–5266

    Article  Google Scholar 

  20. Dean FB, Nelson JR, Giesler TL et al (2001) Rapid amplification of plasmid and phage DNA using Phi 29 DNA polymerase and multiply-primed rolling circle amplification. Genome Res 11:1095–1099

    Article  Google Scholar 

  21. Dekker J, Marti-Renom MA, Mirny LA (2013) Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet 14:390–403

    Article  Google Scholar 

  22. Delatte B, Deplus R, Fuks F (2014) Playing TETris with DNA modifications. EMBO J 33:1198–1211

    Google Scholar 

  23. Denomme MM, Zhang L, Mann MR (2012) Single oocyte bisulfite mutagenesis. J Vis Exp

    Google Scholar 

  24. Dey SS, Kester L, Spanjaard B et al (2015) Integrated genome and transcriptome sequencing of the same cell. Nat Biotechnol

    Google Scholar 

  25. Dobin A, Davis CA, Schlesinger F et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  Google Scholar 

  26. Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  Google Scholar 

  27. El Hajj N, Trapphoff T, Linke M et al (2011) Limiting dilution bisulfite (pyro)sequencing reveals parent-specific methylation patterns in single early mouse embryos and bovine oocytes. Epigenetics: Off J DNA Methylation Soc 6:1176–1188

    Article  Google Scholar 

  28. Engel P, Stepanauskas R, Moran NA (2014) Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet 10:e1004596

    Article  Google Scholar 

  29. Falconer E, Hills M, Naumann U et al (2012) DNA template strand sequencing of single-cells maps genomic rearrangements at high resolution. Nat Methods 9:1107–1112

    Article  Google Scholar 

  30. Falconer E, Lansdorp PM (2013) Strand-seq: a unifying tool for studies of chromosome segregation. Semin Cell Dev Biol 24:643–652

    Article  Google Scholar 

  31. Fan HC, Wang J, Potanina A et al (2011) Whole-genome molecular haplotyping of single cells. Nat Biotechnol 29:51–57

    Article  Google Scholar 

  32. Fang G, Munera D, Friedman DI et al (2012) Genome-wide mapping of methylated adenine residues in pathogenic Escherichia coli using single-molecule real-time sequencing. Nat Biotechnol 30:1232–1239

    Article  Google Scholar 

  33. Farlik M, Sheffield NC, Nuzzo A et al (2015) Single-cell DNA methylome sequencing and bioinformatic inference of epigenomic cell-state dynamics. Cell Rep

    Google Scholar 

  34. Ferguson-Smith AC, Patti ME (2011) You are what your dad ate. Cell Metab 13:115–117

    Article  Google Scholar 

  35. Ficz G, Hore TA, Santos F et al (2013) FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:351–359

    Article  Google Scholar 

  36. Fiegler H, Geigl JB, Langer S et al (2007) High resolution array-CGH analysis of single cells. Nucleic Acids Res 35:e15

    Article  Google Scholar 

  37. Flusberg BA, Webster DR, Lee JH et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

    Article  Google Scholar 

  38. Frumkin D, Wasserstrom A, Kaplan S et al (2005) Genomic variability within an organism exposes its cell lineage tree. PLoS Comput Biol 1:e50

    Article  Google Scholar 

  39. Gawad C, Koh W, Quake SR (2014) Dissecting the clonal origins of childhood acute lymphoblastic leukemia by single-cell genomics. Proc Natl Acad Sci USA 111:17947–17952

    Article  Google Scholar 

  40. Gehlenborg N, O’donoghue SI, Baliga NS et al (2010) Visualization of omics data for systems biology. Nature methods 7:S56-68

    Google Scholar 

  41. Gole J, Gore A, Richards A et al (2013) Massively parallel polymerase cloning and genome sequencing of single cells using nanoliter microwells. Nat Biotechnol 31:1126–1132

    Article  Google Scholar 

  42. Grant GR, Farkas MH, Pizarro AD et al (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27:2518–2528

    Google Scholar 

  43. Guo G, Huss M, Tong GQ et al (2010) Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev Cell 18:675–685

    Article  Google Scholar 

  44. Guo H, Zhu P, Wu X et al (2013) Single-cell methylome landscapes of mouse embryonic stem cells and early embryos analyzed using reduced representation bisulfite sequencing. Genome Res 23:2126–2135

    Article  Google Scholar 

  45. Guo MT, Rotem A, Heyman JA et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155

    Article  Google Scholar 

  46. Habibi E, Brinkman AB, Arand J et al (2013) Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13:360–369

    Article  Google Scholar 

  47. Hamelryck T (2009) Probabilistic models and machine learning in structural bioinformatics. Stat Methods Med Res 18:505–526

    Article  MathSciNet  Google Scholar 

  48. Hartmann CH, Klein CA (2006) Gene expression profiling of single cells on large-scale oligonucleotide arrays. Nucleic Acids Res 34:e143

    Article  Google Scholar 

  49. Hashimshony T, Wagner F, Sher N et al (2012) CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell reports 2:666–673

    Article  Google Scholar 

  50. Heitzer E, Auer M, Gasch C et al (2013) Complex tumor genomes inferred from single circulating tumor cells by array-CGH and next-generation sequencing. Cancer Res 73:2965–2975

    Article  Google Scholar 

  51. Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10:526–537

    Article  Google Scholar 

  52. Hou Y, Song L, Zhu P et al (2012) Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. Cell 148:873–885

    Article  Google Scholar 

  53. Hu DG, Webb G, Hussey N (2004) Aneuploidy detection in single cells using DNA array-based comparative genomic hybridization. Mol Hum Reprod 10:283–289

    Article  Google Scholar 

  54. Huang H, Goto M, Tsunoda H et al (2014) Non-biased and efficient global amplification of a single-cell cDNA library. Nucleic Acids Res 42:e12

    Article  Google Scholar 

  55. Huang J, Yan L, Fan W et al (2014) Validation of multiple annealing and looping-based amplification cycle sequencing for 24-chromosome aneuploidy screening of cleavage-stage embryos. Fertil Steril 102:1685–1691

    Article  Google Scholar 

  56. Islam S, Kjallquist U, Moliner A et al (2011) Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res 21:1160–1167

    Article  Google Scholar 

  57. Islam S, Kjallquist U, Moliner A et al (2012) Highly multiplexed and strand-specific single-cell RNA 5’ end sequencing. Nat Protoc 7:813–828

    Article  Google Scholar 

  58. Ivakhno S, Royce T, Cox AJ et al (2010) CNAseg–a novel framework for identification of copy number changes in cancer from second-generation sequencing data. Bioinformatics 26:3051–3058

    Article  Google Scholar 

  59. Iwamoto K, Bundo M, Ueda J et al (2007) Detection of chromosomal structural alterations in single cells by SNP arrays: a systematic survey of amplification bias and optimized workflow. PLoS ONE 2:e1306

    Article  Google Scholar 

  60. Jaitin DA, Kenigsberg E, Keren-Shaul H et al (2014) Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:776–779

    Article  Google Scholar 

  61. Jiang L, Schlesinger F, Davis CA et al (2011) Synthetic spike-in standards for RNA-seq experiments. Genome Res 21:1543–1551

    Article  Google Scholar 

  62. Jones PA (2012) Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 13:484–492

    Article  Google Scholar 

  63. Kang Y, Norris MH, Zarzycki-Siek J et al (2011) Transcript amplification from single bacterium for transcriptome analysis. Genome Res 21:925–935

    Article  Google Scholar 

  64. Kantlehner M, Kirchner R, Hartmann P et al (2011) A high-throughput DNA methylation analysis of a single cell. Nucleic Acids Res 39:e44

    Article  Google Scholar 

  65. Katayama S, Tohonen V, Linnarsson S et al (2013) SAMstrt: statistical test for differential expression in single-cell transcriptome with spike-in normalization. Bioinformatics 29:2943–2945

    Article  Google Scholar 

  66. Kim CF, Jackson EL, Woolfenden AE et al (2005) Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 121:823–835

    Article  Google Scholar 

  67. Kivioja T, Vaharautio A, Karlsson K et al (2012) Counting absolute numbers of molecules using unique molecular identifiers. Nat Methods 9:72–74

    Article  Google Scholar 

  68. Klambauer G, Schwarzbauer K, Mayr A et al (2012) cn.MOPS: mixture of Poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40:e69

    Article  Google Scholar 

  69. Klein CA, Schmidt-Kittler O, Schardt JA et al (1999) Comparative genomic hybridization, loss of heterozygosity, and DNA sequence analysis of single cells. Proc Natl Acad Sci USA 96:4494–4499

    Article  Google Scholar 

  70. Koboldt DC, Chen K, Wylie T et al (2009) VarScan: variant detection in massively parallel sequencing of individual and pooled samples. Bioinformatics 25:2283–2285

    Article  Google Scholar 

  71. Konings P, Vanneste E, Jackmaert S et al (2012) Microarray analysis of copy number variation in single cells. Nat Protoc 7:281–310

    Article  Google Scholar 

  72. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359

    Article  Google Scholar 

  73. Lasken RS (2012) Genomic sequencing of uncultured microorganisms from single cells. Nat Rev Microbiol 10:631–640

    Article  Google Scholar 

  74. Lasken RS (2007) Single-cell genomic sequencing using multiple displacement amplification. Curr Opin Microbiol 10:510–516

    Article  Google Scholar 

  75. Lasken RS, Mclean JS (2014) Recent advances in genomic DNA sequencing of microbial species from single cells. Nat Rev Genet 15:577–584

    Article  Google Scholar 

  76. Le Caignec C, Spits C, Sermon K et al (2006) Single-cell chromosomal imbalances detection by array CGH. Nucleic Acids Res 34:e68

    Article  Google Scholar 

  77. Lee HJ, Hore TA, Reik W (2014) Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14:710–719

    Article  Google Scholar 

  78. Lee JH, Daugharthy ER, Scheiman J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458

    Article  Google Scholar 

  79. Levin JZ, Yassour M, Adiconis X et al (2010) Comprehensive comparative analysis of strand-specific RNA sequencing methods. Nat Methods 7:709–715

    Article  Google Scholar 

  80. Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323

    Article  Google Scholar 

  81. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  Google Scholar 

  82. Li R, Li Y, Fang X et al (2009) SNP detection for massively parallel whole-genome resequencing. Genome Res 19:1124–1132

    Article  MathSciNet  Google Scholar 

  83. Li Y, Xu X, Song L et al (2012) Single-cell sequencing analysis characterizes common and cell-lineage-specific mutations in a muscle-invasive bladder cancer. GigaScience 1:12

    Article  Google Scholar 

  84. Ling J, Zhuang G, Tazon-Vega B et al (2009) Evaluation of genome coverage and fidelity of multiple displacement amplification from single cells by SNP array. Mol Hum Reprod 15:739–747

    Article  Google Scholar 

  85. Lorthongpanich C, Cheow LF, Balu S et al (2013) Single-cell DNA-methylation analysis reveals epigenetic chimerism in preimplantation embryos. Science 341:1110–1112

    Article  Google Scholar 

  86. Lovatt D, Ruble BK, Lee J et al (2014) Transcriptome in vivo analysis (TIVA) of spatially defined single cells in live tissue. Nat Methods 11:190–196

    Article  Google Scholar 

  87. Lu S, Zong C, Fan W et al (2012) Probing meiotic recombination and aneuploidy of single sperm cells by whole-genome sequencing. Science 338:1627–1630

    Article  Google Scholar 

  88. Luo L, Salunga RC, Guo H et al (1999) Gene expression profiles of laser-captured adjacent neuronal subtypes. Nat Med 5:117–122

    Article  Google Scholar 

  89. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10:e1004126

    Article  Google Scholar 

  90. Marcus JS, Anderson WF, Quake SR (2006) Microfluidic single-cell mRNA isolation and analysis. Anal Chem 78:3084–3089

    Article  Google Scholar 

  91. Marinov GK, Williams BA, Mccue K et al (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510

    Article  Google Scholar 

  92. Marks H, Kalkan T, Menafra R et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–604

    Article  Google Scholar 

  93. Martin KC, Ephrussi A (2009) mRNA localization: gene expression in the spatial dimension. Cell 136:719–730

    Article  Google Scholar 

  94. Mathiesen RR, Fjelldal R, Liestol K et al (2012) High-resolution analyses of copy number changes in disseminated tumor cells of patients with breast cancer. International journal of cancer. J Int Cancer 131:E405–E415

    Article  Google Scholar 

  95. Mckenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  Google Scholar 

  96. Mclean JS, Lasken RS (2014) Single cell genomics of bacterial pathogens: outlook for infectious disease research. Genome Med 6:108

    Article  Google Scholar 

  97. Mclean JS, Lombardo MJ, Badger JH et al (2013) Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 110:E2390–E2399

    Article  Google Scholar 

  98. Mclean JS, Lombardo MJ, Ziegler MG et al (2013) Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res 23:867–877

    Article  Google Scholar 

  99. Metzker ML (2010) Sequencing technologies - the next generation. Nat Rev Genet 11:31–46

    Article  Google Scholar 

  100. Miller CA, Hampton O, Coarfa C et al (2011) ReadDepth: a parallel R package for detecting copy number alterations from short sequencing reads. PLoS ONE 6:e16327

    Article  Google Scholar 

  101. Miura F, Enomoto Y, Dairiki R et al (2012) Amplification-free whole-genome bisulfite sequencing by post-bisulfite adaptor tagging. Nucleic Acids Res 40:e136

    Article  Google Scholar 

  102. Mortazavi A, Williams BA, Mccue K et al (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628

    Article  Google Scholar 

  103. Mulero-Navarro S, Esteller M (2008) Epigenetic biomarkers for human cancer: the time is now. Crit Rev Oncol Hematol 68:1–11

    Article  Google Scholar 

  104. Nagano T, Lubling Y, Stevens TJ et al (2013) Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502:59–64

    Article  Google Scholar 

  105. Navin N, Hicks J (2011) Future medical applications of single-cell sequencing in cancer. Genome Med 3:31

    Article  Google Scholar 

  106. Navin N, Kendall J, Troge J et al (2011) Tumour evolution inferred by single-cell sequencing. Nature 472:90–94

    Article  Google Scholar 

  107. Navin NE (2014) Cancer genomics: one cell at a time. Genome Biol 15:452

    Article  Google Scholar 

  108. Ng RK, Dean W, Dawson C et al (2008) Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5. Nat Cell Biol 10:1280–1290

    Article  Google Scholar 

  109. Ni X, Zhuo M, Su Z et al (2013) Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc Natl Acad Sci USA 110:21083–21088

    Article  Google Scholar 

  110. Ning L, Liu G, Li G et al (2014) Current challenges in the bioinformatics of single cell genomics. Front Oncol 4:7

    Article  Google Scholar 

  111. Ohnishi Y, Huber W, Tsumura A et al (2014) Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat Cell Biol 16:27–37

    Article  Google Scholar 

  112. Ozsolak F, Platt AR, Jones DR et al (2009) Direct RNA sequencing. Nature 461:814–818

    Article  Google Scholar 

  113. Pan X (2014) Single cell analysis: from technology to biology and medicine. Single Cell Biol 3

    Google Scholar 

  114. Pan X, Durrett RE, Zhu H et al (2013) Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci USA 110:594–599

    Article  Google Scholar 

  115. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401

    Article  Google Scholar 

  116. Pelechano V, Steinmetz LM (2013) Gene regulation by antisense transcription. Nat Rev Genet 14:880–893

    Article  Google Scholar 

  117. Picelli S, Bjorklund AK, Faridani OR et al (2013) Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat Methods 10:1096–1098

    Article  Google Scholar 

  118. Picelli S, Faridani OR, Bjorklund AK et al (2014) Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc 9:171–181

    Article  Google Scholar 

  119. Pinkel D, Segraves R, Sudar D et al (1998) High resolution analysis of DNA copy number variation using comparative genomic hybridization to microarrays. Nat Genet 20:207–211

    Article  Google Scholar 

  120. Polzer B, Medoro G, Pasch S et al (2014) Molecular profiling of single circulating tumor cells with diagnostic intention. EMBO Mol Med 6:1371–1386

    Article  Google Scholar 

  121. Pugh TJ, Delaney AD, Farnoud N et al (2008) Impact of whole genome amplification on analysis of copy number variants. Nucleic Acids Res 36:e80

    Article  Google Scholar 

  122. Raghunathan A, Ferguson HR Jr, Bornarth CJ et al (2005) Genomic DNA amplification from a single bacterium. Appl Environ Microbiol 71:3342–3347

    Article  Google Scholar 

  123. Ramskold D, Luo S, Wang YC et al (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol 30:777–782

    Article  Google Scholar 

  124. Rinke C, Lee J, Nath N et al (2014) Obtaining genomes from uncultivated environmental microorganisms using FACS-based single-cell genomics. Nat Protoc 9:1038–1048

    Article  Google Scholar 

  125. Rinke C, Schwientek P, Sczyrba A et al (2013) Insights into the phylogeny and coding potential of microbial dark matter. Nature 499:431–437

    Article  Google Scholar 

  126. Saadatpour A, Guo G, Orkin SH et al (2014) Characterizing heterogeneity in leukemic cells using single-cell gene expression analysis. Genome Biol 15:525

    Article  Google Scholar 

  127. Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32:347–355

    Article  Google Scholar 

  128. Sasagawa Y, Nikaido I, Hayashi T et al (2013) Quartz-Seq: a highly reproducible and sensitive single-cell RNA sequencing method, reveals non-genetic gene-expression heterogeneity. Genome Biol 14:R31

    Article  Google Scholar 

  129. Satija R, Farrell JA, Gennert D et al. (2015) Spatial reconstruction of single-cell gene expression data. Nature Biotechnol

    Google Scholar 

  130. Schepers AG, Snippert HJ, Stange DE et al (2012) Lineage tracing reveals Lgr5 + stem cell activity in mouse intestinal adenomas. Science 337:730–735

    Article  Google Scholar 

  131. Schmidt WM, Mueller MW (1999) CapSelect: a highly sensitive method for 5’ CAP-dependent enrichment of full-length cDNA in PCR-mediated analysis of mRNAs. Nucleic Acids Res 27:e31

    Article  Google Scholar 

  132. Schubeler D (2015) Function and information content of DNA methylation. Nature 517:321–326

    Article  Google Scholar 

  133. Seisenberger S, Andrews S, Krueger F et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862

    Article  Google Scholar 

  134. Shalek AK, Satija R, Adiconis X et al (2013) Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–240

    Article  Google Scholar 

  135. Shalek AK, Satija R, Shuga J et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–369

    Google Scholar 

  136. Shapiro E, Biezuner T, Linnarsson S (2013) Single-cell sequencing-based technologies will revolutionize whole-organism science. Nat Rev Genet 14:618–630

    Article  Google Scholar 

  137. Smallwood SA, Lee HJ, Angermueller C et al (2014) Single-cell genome-wide bisulfite sequencing for assessing epigenetic heterogeneity. Nat Methods 11:817–820

    Article  Google Scholar 

  138. Song CX, Clark TA, Lu XY et al (2012) Sensitive and specific single-molecule sequencing of 5-hydroxymethylcytosine. Nat Methods 9:75–77

    Article  Google Scholar 

  139. Spits C, Le Caignec C, De Rycke M et al (2006) Optimization and evaluation of single-cell whole-genome multiple displacement amplification. Hum Mutat 27:496–503

    Article  Google Scholar 

  140. Stone A, Cowley MJ, Valdes-Mora F et al (2013) BCL-2 hypermethylation is a potential biomarker of sensitivity to antimitotic chemotherapy in endocrine-resistant breast cancer. Mol Cancer Ther 12:1874–1885

    Article  Google Scholar 

  141. Streets AM, Zhang X, Cao C et al (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci USA 111:7048–7053

    Article  Google Scholar 

  142. Subkhankulova T, Gilchrist MJ, Livesey FJ (2008) Modelling and measuring single cell RNA expression levels find considerable transcriptional differences among phenotypically identical cells. BMC Genom 9:268

    Article  Google Scholar 

  143. Suzuki MM, Bird A (2008) DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 9:465–476

    Article  Google Scholar 

  144. Swennenhuis JF, Reumers J, Thys K et al (2013) Efficiency of whole genome amplification of single circulating tumor cells enriched by cell search and sorted by FACS. Genome Med 5:106

    Article  Google Scholar 

  145. Talseth-Palmer BA, Bowden NA, Hill A et al (2008) Whole genome amplification and its impact on CGH array profiles. BMC Res Notes 1:56

    Article  Google Scholar 

  146. Tan SJ, Phan H, Gerry BM et al (2013) A microfluidic device for preparing next generation DNA sequencing libraries and for automating other laboratory protocols that require one or more column chromatography steps. PLoS ONE 8:e64084

    Article  Google Scholar 

  147. Tang F, Barbacioru C, Nordman E et al (2011) Deterministic and stochastic allele specific gene expression in single mouse blastomeres. PLoS ONE 6:e21208

    Article  Google Scholar 

  148. Tang F, Barbacioru C, Nordman E et al (2010) RNA-Seq analysis to capture the transcriptome landscape of a single cell. Nat Protoc 5:516–535

    Article  Google Scholar 

  149. Tang F, Barbacioru C, Wang Y et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382

    Article  Google Scholar 

  150. Telenius H, Carter NP, Bebb CE et al (1992) Degenerate oligonucleotide-primed PCR: general amplification of target DNA by a single degenerate primer. Genomics 13:718–725

    Article  Google Scholar 

  151. Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  Google Scholar 

  152. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28:511–515

    Article  Google Scholar 

  153. Treff NR, Su J, Tao X et al (2010) Accurate single cell 24 chromosome aneuploidy screening using whole genome amplification and single nucleotide polymorphism microarrays. Fertil Steril 94:2017–2021

    Article  Google Scholar 

  154. Treutlein B, Brownfield DG, Wu AR et al (2014) Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:371–375

    Article  Google Scholar 

  155. Truong K, Ikura M (2001) The use of FRET imaging microscopy to detect protein-protein interactions and protein conformational changes in vivo. Curr Opin Struct Biol 11:573–578

    Article  Google Scholar 

  156. Van Der Aa N, Zamani Esteki M, Vermeesch JR et al (2013) Preimplantation genetic diagnosis guided by single-cell genomics. Genome Med 5:71

    Article  Google Scholar 

  157. Van Gelder RN, Von Zastrow ME, Yool A et al (1990) Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci USA 87:1663–1667

    Article  Google Scholar 

  158. Van Loo P, Voet T (2014) Single cell analysis of cancer genomes. Curr Opin Genet Dev 24:82–91

    Article  Google Scholar 

  159. Van Uum CM, Stevens SJ, Dreesen JC et al (2012) SNP array-based copy number and genotype analyses for preimplantation genetic diagnosis of human unbalanced translocations. Eur J Hum Genet: EJHG 20:938–944

    Article  Google Scholar 

  160. Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  Google Scholar 

  161. Voet T, Kumar P, Van Loo P et al (2013) Single-cell paired-end genome sequencing reveals structural variation per cell cycle. Nucleic Acids Res 41:6119–6138

    Article  Google Scholar 

  162. Wallace EV, Stoddart D, Heron AJ et al (2010) Identification of epigenetic DNA modifications with a protein nanopore. Chem Commun (Camb) 46:8195–8197

    Article  Google Scholar 

  163. Wang K, Li M, Hadley D et al (2007) PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res 17:1665–1674

    Article  Google Scholar 

  164. Wang Y, Waters J, Leung ML et al (2014) Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 512:155–160

    Article  Google Scholar 

  165. Warren L, Bryder D, Weissman IL et al (2006) Transcription factor profiling in individual hematopoietic progenitors by digital RT-PCR. Proc Natl Acad Sci USA 103:17807–17812

    Article  Google Scholar 

  166. Wells D, Sherlock JK, Handyside AH et al (1999) Detailed chromosomal and molecular genetic analysis of single cells by whole genome amplification and comparative genomic hybridisation. Nucleic Acids Res 27:1214–1218

    Article  Google Scholar 

  167. Welty CJ, Coleman I, Coleman R et al (2013) Single cell transcriptomic analysis of prostate cancer cells. BMC Mol Biol 14:6

    Article  Google Scholar 

  168. White AK, Vaninsberghe M, Petriv OI et al (2011) High-throughput microfluidic single-cell RT-qPCR. Proc Natl Acad Sci USA 108:13999–14004

    Article  Google Scholar 

  169. Wu AR, Neff NF, Kalisky T et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46

    Article  Google Scholar 

  170. Xie C, Tammi MT (2009) CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinformatics 10:80

    Article  Google Scholar 

  171. Xu X, Hou Y, Yin X et al (2012) Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148:886–895

    Article  Google Scholar 

  172. Xue Z, Huang K, Cai C et al (2013) Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature 500:593–597

    Article  Google Scholar 

  173. Yan L, Yang M, Guo H et al (2013) Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat Struct Mol Biol 20:1131–1139

    Article  Google Scholar 

  174. Ying QL, Wray J, Nichols J et al (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    Article  Google Scholar 

  175. Yona S, Kim KW, Wolf Y et al (2013) Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38:79–91

    Article  Google Scholar 

  176. Yu M, Hon GC, Szulwach KE et al (2012) Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell 149:1368–1380

    Article  Google Scholar 

  177. Zemke AC, Snyder JC, Brockway BL et al (2009) Molecular staging of epithelial maturation using secretory cell-specific genes as markers. Am J Respir Cell Mol Biol 40:340–348

    Article  Google Scholar 

  178. Zhang J, Wheeler DA, Yakub I et al (2005) SNPdetector: a software tool for sensitive and accurate SNP detection. PLoS Comput Biol 1:e53

    Article  Google Scholar 

  179. Zhang K, Martiny AC, Reppas NB et al (2006) Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24:680–686

    Article  Google Scholar 

  180. Zhang L, Cui X, Schmitt K et al (1992) Whole genome amplification from a single cell: implications for genetic analysis. Proc Natl Acad Sci USA 89:5847–5851

    Article  Google Scholar 

  181. Zong C, Lu S, Chapman AR et al (2012) Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science 338:1622–1626

    Article  Google Scholar 

Download references

Acknowledgments

FVM is a National Breast Cancer Foundation/Cure Cancer Australia Foundation Postdoctoral Training Fellow. This work is supported by National Health and Medical Research Council project grants (NHMRC 1063560). HJL supported by a grant from EU FP7 BLUEPRINT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fátima Valdés-Mora .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Valdés-Mora, F., Lee, H.J. (2016). Single-Cell Genomics and Epigenomics. In: Tseng, FG., Santra, T. (eds) Essentials of Single-Cell Analysis. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49118-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49118-8_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49116-4

  • Online ISBN: 978-3-662-49118-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics