Skip to main content

Microinjection for Single-Cell Analysis

  • Chapter
  • First Online:
Essentials of Single-Cell Analysis

Part of the book series: Series in BioEngineering ((SERBIOENG))

Abstract

The mere existence of life, from unicellular organisms to well-organized multicellular organisms, pathological conditions and death, has always fascinated human beings and demanded understanding of biological systems over several centuries. Further, an efficient treatment strategy for genetic disorders requires understanding of pathological conditions at the single-cell level. Numerous experimental methodologies have been developed over several decades to facilitate our understanding of cellular functions, by modulating the molecular pathways. Needle microinjection is one of them and it is widely used to modulate cellular functions by introducing foreign cargo into the cell. Microinjection is a method that can directly deliver a precise amount of foreign cargo either into the cytoplasm or the nucleus of a single cell using micropipettes. It is considered a gold standard method of direct cargo delivery. After introduction of this technique in the early 1900s, numerous modifications were made to improve its efficiency and it was applied to a wide variety of fields from scientific research to clinical therapy. This chapter is intended to provide a basic knowledge of the microinjection technique, its advantages and disadvantages, its development, the basic instrumentation required along with a basic protocol, and its uses collected extensively from numerous literatures up-to-date. Further, several modifications that have been carried out to improve the basic instrumentation setup, in order to increase the efficiency and rate of microinjection by the addition of semi-automated and automated computerized systems, are also discussed. Finally, this chapter provides a gateway to explore advanced understanding of microinjection for single-cell analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Feramisco J, Perona R, Lacal JE (1999) Needle microinjection: a brief history. In: Microinjection, pp 9–15

    Google Scholar 

  2. Barber M (1911) A technic for the inoculation of bacteria and other substances into living cells. J Infect Dis 8:348–360

    Article  Google Scholar 

  3. Zhang Y, Yu L-C (2008) Microinjection as a tool of mechanical delivery. Curr Opin Biotechnol 19:506–510. doi:10.1016/j.copbio.2008.07.005

    Article  Google Scholar 

  4. Zhang Y, LeBlanc AC (2002) Microinjections to study the specific role of proapoptotic proteins in neurons. In: Apoptosis Techniques and Protocols. Springer, New York, pp 83–106

    Google Scholar 

  5. Zhang Y, Yu L-C (2008) Single-cell microinjection technology in cell biology. BioEssays 30:606–610. doi:10.1002/bies.20759

    Article  Google Scholar 

  6. Colosimo A, Goncz KK, Holmes AR et al (2000) Transfer and expression of foreign genes in mammalian cells. Biotechniques 29:314–331

    Google Scholar 

  7. Dokka S, Rojanasakul Y (2000) Novel non-endocytic delivery of antisense oligonucleotides. Adv Drug Deliv Rev 44:35–49. doi:10.1016/S0169-409X(00)00082-X

    Article  Google Scholar 

  8. Kimura Y, Yanagimachi R (1995) Intracytoplasmic sperm injection in the mouse. Biol Reprod 52:709–720. doi:10.1095/biolreprod52.4.709

    Article  Google Scholar 

  9. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340:17–18. doi: 10.1016/0140-6736(92)92425-F

    Google Scholar 

  10. Viigipuu K, Kallio P (2004) Microinjection of living adherent cells by using a semi-automatic microinjection system. Altern Lab Anim 32(4):417–423

    Google Scholar 

  11. Adamo A, Jensen KF (2008) Microfluidic based single cell microinjection. Lab Chip. doi:10.1039/b803212b

    Google Scholar 

  12. Meacham JM, Durvasula K, Degertekin FL, Fedorov AG (2014) Physical methods for intracellular delivery: practical aspects from laboratory use to industrial-scale processing. J Lab Autom 19:1–18. doi:10.1177/2211068213494388

    Article  Google Scholar 

  13. Pepperkok R, Schneider C, Philipson L, Ansorge W (1988) Single cell assay with an automated microinjection system capillary. Exp Cell Res 178:369–376

    Article  Google Scholar 

  14. Matsuoka H, Komazaki T, Mukai Y et al (2005) High throughput easy microinjection with a single-cell manipulation supporting robot. J Biotechnol 116:185–194. doi:10.1016/j.jbiotec.2004.10.010

    Article  Google Scholar 

  15. Katarzyna J (2012) AFM based single cell microinjection: technological developements, Biological experiments and biophysical analysis of probe indentation

    Google Scholar 

  16. Cuerrier CM, Lebel R, Grandbois M (2007) Single cell transfection using plasmid decorated AFM probes. Biochem Biophys Res Commun 355:632–636. doi:10.1016/j.bbrc.2007.01.190

    Article  Google Scholar 

  17. Kay MA, Glorioso JC, Naldini L (2001) Viral vectors for gene therapy : the art of turning infectious. Nature 7:33–40. doi:10.1038/83324

    Google Scholar 

  18. Zhang X, Godbey WT (2006) Viral vectors for gene delivery in tissue engineering. Adv Drug Deliv Rev 58:515–534. doi:10.1016/j.addr.2006.03.006

    Article  Google Scholar 

  19. Robbins PD, Ghivizzani SC (1998) Viral vectors for gene therapy. Pharmacol Ther 80:35–47. doi:10.1016/S0163-7258(98)00020-5

    Article  Google Scholar 

  20. Casper D, Engstrom SJ, Mirchandani GR et al (2002) Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer. Cell Transplant 11:331–349

    Google Scholar 

  21. Condreay JP, Witherspoon SM, Clay WC, Kost TA (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc Natl Acad Sci U S A 96:127–132. doi:10.1073/pnas.96.1.127

    Google Scholar 

  22. Thomas CE, Ehrhardt A, Kay MA (2003) Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 4:346–358. doi:10.1038/nrg1066

    Google Scholar 

  23. Truong HH, de Sonneville J, Ghotra VPS et al (2012) Automated microinjection of cell-polymer suspensions in 3D ECM scaffolds for high-throughput quantitative cancer invasion screens. Biomaterials 33:181–188. doi:10.1016/j.biomaterials.2011.09.049

    Article  Google Scholar 

  24. Sanford JC, Klein TM, Wolf ED, Allen N (1987) Delivery of substances into cells and tissues using a particle bombardment process. Part Sci Technol 5:27–37. doi:10.1080/02726358708904533

    Article  Google Scholar 

  25. Yang NS, Burkholder J, Roberts B et al (1990) In vivo and in vitro gene transfer to mammalian somatic cells by particle bombardment. Proc Natl Acad Sci U S A 87:9568–9572. doi:10.1073/pnas.87.24.9568

    Article  Google Scholar 

  26. Udvardi A, Kufferath I, Grutsch H et al (1999) Uptake of exogenous DNA via the skin. J Mol Med (Berl) 77:744–750. doi:10.1007/s001099900048

    Google Scholar 

  27. Zelenin AV, Kolesnikov VA, Tarasenko OA et al (1997) Bacterial beta-galactosidase and human dystrophin genes are expressed in mouse skeletal muscle fibers after ballistic transfection. FEBS Lett 414:319–322. doi:10.1016/s0014-5793(97)01019-3

  28. Sohn RL, Murray MT, Schwarz K et al (2001) In-vivo particle mediated delivery of mRNA to mammalian tissues: ballistic and biologic effects. Wound Repair Regen 9:287–296. doi:10.1046/j.1524-475X.2001.00287.x

    Google Scholar 

  29. Plank C, Schillinger U, Scherer F et al (2003) The magnetofection method: using magnetic force to enhance gene delivery. Biol Chem 384:737–747. doi:10.1515/BC.2003.082

    Article  Google Scholar 

  30. Scherer F, Anton M, Schillinger U et al (2002) Magnetofection-enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther 102–109. doi: 10.1038/sj/gt/3301624

  31. Plank C, Zelphati O, Mykhaylyk O (2011) Magnetically enhanced nucleic acid delivery. Ten years of magnetofection-progress and prospects. Adv Drug Deliv Rev 63:1300–1331. doi:10.1016/j.addr.2011.08.002

    Article  Google Scholar 

  32. Santra TS, Tseng FG (2013) Recent trends on micro/nanofluidic single cell electroporation. Micromachines 4:333–356. doi:10.3390/mi4030333

    Article  Google Scholar 

  33. Chen SC, Santra TS, Chang CJ et al (2012) Delivery of molecules into cells using localized single cell electroporation on ITO micro-electrode based transparent chip. Biomed Microdevices 14:811–817. doi:10.1007/s10544-012-9660-9

    Article  Google Scholar 

  34. Santra TS, Wang PC, Chang HY, Tseng FG (2013) Tuning nano electric field to affect restrictive membrane area on localized single cell nano-electroporation. Appl Phys Lett. doi:10.1063/1.4833535

    Google Scholar 

  35. Frenkel V, Li KCP (2006) Potential role of pulsed-high intensity focused ultrasound in gene therapy. Future Oncol 2:111–119. doi:10.2217/14796694.2.1.111

    Article  Google Scholar 

  36. Newman CMH, Bettinger T (2007) Gene therapy progress and prospects: ultrasound for gene transfer. Gene Ther 14:465–475. doi:10.1038/sj.gt.3302925

    Article  Google Scholar 

  37. Ter Haar G (2007) Therapeutic applications of ultrasound. Prog Biophys Mol Biol 93:111–129. doi:10.1016/j.pbiomolbio.2006.07.005

    Article  Google Scholar 

  38. Mellott AJ, Forrest ML, Detamore MS (2013) Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 41:446–468. doi:10.1007/s10439-012-0678-1

    Article  Google Scholar 

  39. Palumbo G, Caruso M, Crescenzi E et al (1996) Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J Photochem Photobiol B Biol 36:41–46. doi:10.1016/S1011-1344(96)07335-6

    Article  Google Scholar 

  40. Zeira E, Manevitch A, Khatchatouriants A et al (2003) Femtosecond infrared laser—an efficient and safe in vivo gene delivery system for prolonged expression. Mol Ther 8:342–350. doi:10.1016/S1525-0016(03)00184-9

    Article  Google Scholar 

  41. Tao W, Wilkinson J, Stanbridge EJ, Berns MW (1987) Direct gene transfer into human cultured cells facilitated by laser micropuncture of the cell membrane. Proc Natl Acad Sci U S A 84:4180–4184. doi:10.1073/pnas.84.12.4180

    Article  Google Scholar 

  42. Ogura M, Sato S, Nakanishi K et al (2004) In vivo targeted gene transfer in skin by the use of laser-induced stress waves. Lasers Surg Med 34:242–248. doi:10.1002/lsm.20024

    Article  Google Scholar 

  43. Shirahata Y, Ohkohchi N, Itagak H, Satomi S (2001) New technique for gene transfection using laser irradiation. J Investig Med 49:184–190

    Article  Google Scholar 

  44. Wong FK, Haffner C, Huttner WB, Taverna E (2014) Microinjection of membrane-impermeable molecules into single neural stem cells in brain tissue. Nat Protoc 9:1170–1182. doi:10.1038/nprot.2014.074

    Article  Google Scholar 

  45. Porter KR (1984) The cytomatrix: a short history of its study. J Cell Biol. doi:10.1083/jcb.99.1.3s

    Google Scholar 

  46. Korzh V, Strähle U (2002) Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation 70:221–226. doi:10.1046/j.1432-0436.2002.700601.x

    Article  Google Scholar 

  47. Flickinger CJ (1974) Radioactive labeling of the Golgi apparatus by micro-injection of individual amebae. Exp Cell Res. doi:10.1016/0014-4827(74)90262-6

    Google Scholar 

  48. Jeon KW, Lorch IJ, Moran JF et al (1967) Cytoplasmic inheritance in amoebae: modification of response to antiserum by micro-injection of heterologous cytoplasmic homogenates. Exp Cell Res 46:615–619. doi:10.1016/0014-4827(67)90392-8

    Article  Google Scholar 

  49. Lin TP (1966) Microinjection of mouse eggs. Science 151:333–337. doi:10.1126/science.151.3708.333

    Article  Google Scholar 

  50. Knowles J (1974) An improved microinjection technique in Paramecium aurelia: transfer of mitochondria conferring erythromycin-resistance. Exp Cell Res 88:79–87

    Article  Google Scholar 

  51. Koizumi S (1974) Microinjection and transfer of cytoplasm in Paramecium. Experiments on the transfer of kappa particles into cells at different stages. Exp Cell Res. doi:10.1016/0014-4827(74)90619-3

    Google Scholar 

  52. Gurdon JB, Lane CD, Woodland HR, Marbaix G (1971) Use of frog eggs and oocytes for the study of messenger RNA and its translation in living cells. Nature 233:177–182. doi:10.1038/233177a0

    Article  Google Scholar 

  53. Graessmann A, Graessmann M (1971) The formation of melanin in muscle cells after direct transfer of RNA from Harding-Passeg melanoma cells. Hoppe-Seyler’s Z Physiol Chem 352:527–532

    Article  Google Scholar 

  54. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell. doi:10.1016/0092-8674(80)90358-X

    Google Scholar 

  55. Harbers K, Jähner D, Jaenisch R (1981) Microinjection of cloned retroviral genomes into mouse zygotes: integration and expression in the animal. Nature 293:540–542. doi:10.1038/293540a0

    Article  Google Scholar 

  56. Gordon JW, Scangos GA, Plotkin DJ et al (1980) Genetic transformation of mouse embryos by microinjection of purified DNA. Proc Natl Acad Sci U S A 77:7380–7384. doi:10.1073/pnas.77.12.7380

    Google Scholar 

  57. Costantini F, Lacy E (1981) Introduction of a rabbit beta-globin gene into the mouse germ line. Nature 294:92–94

    Article  Google Scholar 

  58. Lacy E, Roberts S, Evans EP et al (1983) A foreign beta-globin gene in transgenic mice: integration at abnormal chromosomal positions and expression in inappropriate tissues. Cell 34:343–358. doi:10.1016/0092-8674(83)90369-0

    Article  Google Scholar 

  59. Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214:1244–1246. doi:10.1126/science.6272397

    Article  Google Scholar 

  60. Wang J, Liu XJ (2004) Progesterone inhibits protein kinase A (PKA) in Xenopus oocytes: demonstration of endogenous PKA activities using an expressed substrate. J Cell Sci 117:5107–5116. doi:10.1242/jcs.01383

    Article  Google Scholar 

  61. Maller JL, Koontz JW (1980) Induction of cell division in amphibian oocytes by insulin. J Cell Biol 87:309–316. doi:10.1016/0012-1606(81)90262-1

    Article  Google Scholar 

  62. Stühmer W, Ruppersberg JP, Schröter KH et al (1989) Molecular basis of functional diversity of voltage-gated potassium channels in mammalian brain. EMBO J 8:3235–3244

    Google Scholar 

  63. Stacey DW, Allfrey VG (1977) Evidence for the autophagy of microinjected proteins in HeLa cells. J Cell Biol. doi:10.1083/jcb.75.3.807

    Google Scholar 

  64. Kozma R, Ahmed S, Best A, Lim L (1995) The Ras-related protein Cdc42Hs and bradykinin promote formation of peripheral actin microspikes and filopodia in Swiss 3T3 fibroblasts. Mol Cell Biol 15:1942–1952

    Article  Google Scholar 

  65. Scheer U, Hinssen H, Franke WW, Jockusch BM (1984) Microinjection of actin-binding proteins and actin antibodies demonstrates involvement of nuclear actin in transcription of lampbrush chromosomes. Cell 39:111–122. doi:10.1016/0092-8674(84)90196-X

    Article  Google Scholar 

  66. Ridley AJ, Paterson HF, Johnston CL et al (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell. doi:10.1016/0962-8924(92)90174-L

    Google Scholar 

  67. Feramisco JR, Gross M, Kamata T et al (1984) Microinjection of the oncogene form of the human H-ras (T-24) protein results in rapid proliferation of quiescent cells. Cell 38:109–117. doi:10.1016/0092-8674(84)90531-2

    Article  Google Scholar 

  68. Bar-Sagi D, Feramisco JR (1985) Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell. doi:10.1016/0092-8674(85)90280-6

    Google Scholar 

  69. Uehara T, Yanagamachi R (1976) Microsurgical ingection of spermatozoa into hamster eggs with subsequent transformation of sperm nuclei into male pronuclei. Biol Reprod 470:467–470

    Article  Google Scholar 

  70. Uehara T, Yanagimachi R (1977) Behavior of nuclei of testicular, caput and cauda epididymal spermatozoa injected into hamster eggs. Biol Reprod 16:315–321. doi:10.1095/biolreprod16.3.315

    Article  Google Scholar 

  71. Iritani A, Utsumi K, Miyake M et al (1988) In vitro fertilization by a routine method and by micromanipulation. Ann N Y Acad Sci 541:583–590

    Google Scholar 

  72. Goto K, Kinoshita A, Takuma Y, Ogawa K (1990) Fertilisation of bovine oocytes by the injection of immobilised, killed spermatozoa. Vet Rec 127:517–520

    Google Scholar 

  73. Van Steirteghem AC, Nagy Z, Joris H et al (1993) High fertilization and implantation rates after intracytoplasmic sperm injection. Hum Reprod 8:1061–1066. doi:10.1097/00006254-199402000-00020

    Google Scholar 

  74. Palermo G, Joris H, Derde MP et al (1993) Sperm characteristics and outcome of human assisted fertilization by subzonal insemination and intracytoplasmic sperm injection. Fertil Steril 59:826–835. doi:10.1071/RD9940085

    Google Scholar 

  75. Fishel S, Timson J, Lisi F et al (1994) Micro-assisted fertilization in patients who have failed subzonal insemination. Hum Reprod 9:501–505

    Google Scholar 

  76. Tournaye H, Devroey P, Liu J et al (1994) Microsurgical epididymal sperm aspiration and intracytoplasmic sperm injection: a new effective approach to infertility as a result of congenital bilateral absence of the vas deferens. Fertil Steril 61:1045–1051. doi:10.1016/0020-7292(95)90216-3

    Google Scholar 

  77. Masani MYA, Noll GA, Parveez GKA et al (2014) Efficient transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. PLoS ONE. doi:10.1371/journal.pone.0096831

    Google Scholar 

  78. Lodish H, Berk A, Kaiser CA et al (2013) Molecular cell biology, 7th edn. W.H. Freeman and company, New York

    Google Scholar 

  79. Karp G (2008) Cell and molecular biology: concepts and experiments. Wiley, New York

    Google Scholar 

  80. Cooper G (2000) The cell: a molecular approach, 2nd edn. Sinauer Associates, Sunderland(MA)

    Google Scholar 

  81. Woese C (1998) The universal ancestor. Proc Natl Acad Sci U S A 95:6854–6859

    Article  Google Scholar 

  82. Belting M, Sandgren S, Wittrup A (2005) Nuclear delivery of macromolecules: barriers and carriers. Adv Drug Deliv Rev. doi:10.1016/j.addr.2004.10.004

    Google Scholar 

  83. Woese CR (2002) On the evolution of cells. Proc Natl Acad Sci U S A 99:8742–8747. doi:10.1073/pnas.132266999

    Article  Google Scholar 

  84. Lechardeur D, Verkman AS, Lukacs GL (2005) Intracellular routing of plasmid DNA during non-viral gene transfer. Adv Drug Deliv Rev. doi:10.1016/j.addr.2004.12.008

    Google Scholar 

  85. Lechardeur D, Lukacs GL (2002) Intracellular barriers to non-viral gene transfer. Curr Gene Ther 2:183–194. doi:10.2174/1566523024605609

    Article  Google Scholar 

  86. Schubbert R, Hohlweg U, Renz D, Doerfler W (1998) On the fate of orally ingested foreign DNA in mice: chromosomal association and placental transmission to the fetus. Mol Gen Genet 259:569–576. doi:10.1007/s004380050850

    Article  Google Scholar 

  87. Hashida M, Mahato RI, Kawabata K et al (1996) Pharmacokinetics and targeted delivery of proteins and genes. J Control Release 41:91–97. doi:10.1016/0168-3659(96)01360-0

    Article  Google Scholar 

  88. Jain MK, Wagner RC (1980) Introduction to biological membranes. Wiley, New York

    Google Scholar 

  89. Conner SD, Schmid SL (2003) Regulated portals of entry into the cell. Nature 422:37–44. doi:10.1038/nature01451

    Article  Google Scholar 

  90. Swanson JA, Watts C (1995) Macropinocytosis. Trends Cell Biol 5:424–428. doi:10.1016/S0962-8924(00)89101-1

    Google Scholar 

  91. Pelkmans L, Helenius A (2002) Endocytosis via caveolae. Traffic 3:311–320. doi:10.1034/j.1600-0854.2002.30501.x

    Article  Google Scholar 

  92. Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623. doi:10.1146/annurev.immunol.17.1.593

    Google Scholar 

  93. Schmid SL (1997) Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu Rev Biochem 66:511–548. doi:10.1146/annurev.biochem.66.1.511

    Article  Google Scholar 

  94. Hafez IM, Maurer N, Cullis PR (2001) On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther 8:1188–1196. doi:10.1038/sj.gt.3301506

    Article  Google Scholar 

  95. Klopfenstein DR, Vale RD, Rogers SL (2000) Motor protein receptors: moonlighting on other jobs. Cell 103:537–540

    Article  Google Scholar 

  96. Rogers SL, Gelfand VI (2000) Membrane trafficking, organelle transport, and the cytoskeleton. Curr Opin Cell Biol 12:57–62. doi:10.1016/S0955-0674(99)00057-5

    Article  Google Scholar 

  97. Burke NV, Han W, Li D et al (1997) Neuronal peptide release is limited by secretory granule mobility. Neuron 19:1095–1102. doi:10.1016/S0896-6273(00)80400-6

    Article  Google Scholar 

  98. Steyer JA, Horstmann H, Almers W (1997) Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388:474–478. doi:10.1038/41329

    Google Scholar 

  99. Panté N, Kann M (2002) Nuclear pore complex is able to transport macromolecules with diameters of about 39 nm. Mol Biol Cell 13:425–434. doi:10.1091/mbc.01-06-0308

    Article  Google Scholar 

  100. Talcott B, Moore MS (1999) Getting across the nuclear pore complex. Trends Cell Biol 9:312–318. doi:10.1016/S0962-8924(99)01608-6

    Article  Google Scholar 

  101. Harel A, Forbes DJ (2001) Welcome to the nucleus: Can I take your coat? Nat Cell Biol 3:E267–E269. doi:10.1038/ncb1201-e267

    Google Scholar 

  102. Kuersten S, Ohno M, Mattaj IW (2001) Nucleocytoplasmic transport: ran, beta and beyond. Trends Cell Biol 11:497–503. doi:10.1016/S0962-8924(01)02144-4

    Article  Google Scholar 

  103. Olsnes S, Klingenberg O, Wiedłocha A (2003) Transport of exogenous growth factors and cytokines to the cytosol and to the nucleus. Physiol Rev 83:163–182. doi:10.1152/physrev.00021.2002

    Article  Google Scholar 

  104. Keresztes M, Boonstra J, Gfs N (1999) Import(ance) of growth factors in (to) the nucleus. 145:421–424

    Google Scholar 

  105. Leonetti JP, Mechti N, Degols G et al (1991) Intracellular distribution of microinjected antisense oligonucleotides. Proc Natl Acad Sci U S A 88:2702–2706. doi:10.1073/pnas.88.7.2702

    Article  Google Scholar 

  106. Dowty ME, Williams P, Zhang G et al (1995) Plasmid DNA entry into postmitotic nuclei of primary rat myotubes. Proc Natl Acad Sci U S A 92:4572–4576. doi:10.1073/pnas.92.10.4572

    Article  Google Scholar 

  107. Lukacs GL, Haggie P, Seksek O et al (2000) Size-dependent DNA mobility in cytoplasm and nucleus. J Biol Chem 275:1625–1629. doi:10.1074/jbc.275.3.1625

    Article  Google Scholar 

  108. Lechardeur D, Sohn KJ, Haardt M et al (1999) Metabolic instability of plasmid DNA in the cytosol: a potential barrier to gene transfer. Gene Ther 6:482–497. doi:10.1038/sj.gt.3300867

    Article  Google Scholar 

  109. Mortimer I, Tam P, MacLachlan I et al (1999) Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther 6:403–411. doi:10.1038/sj.gt.3300837

    Article  Google Scholar 

  110. Salman H, Zbaida D, Rabin Y et al (2001) Kinetics and mechanism of DNA uptake into the cell nucleus. Proc Natl Acad Sci U S A 98:7247–7252. doi:10.1073/pnas.121067698

    Article  Google Scholar 

  111. Chambers R, Fell HB (1931) Micro-operations on cells in tissue cultures. Proc R Soc B Biol Sci 109:380–403. doi:10.1098/rspb.1931.0090

    Article  Google Scholar 

  112. Kopac MJ (1938) The Devaux effect at oil-protoplasm interfaces. Biol Bull 75:372

    Google Scholar 

  113. Chambers R (1940) The micromanipulation of living cells. In the cell and protoplasm. Am Assoc Adv Sci Sci Press 14:20–30

    Google Scholar 

  114. Hawkins SE (1969) Transmission of cytoplasmic determinants in amoebae by microinjection of RNA-containing fractions. Nature 224:1127–1129

    Article  Google Scholar 

  115. Zhang Y, Champagne N, Beitel LK et al (2004) Estrogen and androgen protection of human neurons against intracellular amyloid beta1-42 toxicity through heat shock protein 70. J Neurosci 24:5315–5321. doi:10.1523/JNEUROSCI.0913-04.2004

    Article  Google Scholar 

  116. Zhang Y, Hong Y, Bounhar Y et al (2003) P75 neurotrophin receptor protects primary cultures of human neurons against extracellular amyloid beta peptide cytotoxicity. J Neurosci 23:7385–7394. doi:23/19/7385 [pii]

    Google Scholar 

  117. Zhang Y, Goodyer C, LeBlanc A (2000) Selective and protracted apoptosis in human primary neurons microinjected with active caspase-3, -6, -7, and -8. J Neurosci 20:8384–8389. doi:20/22/8384 [pii]

    Google Scholar 

  118. Bounhar Y, Zhang Y, Goodyer CG, LeBlanc A (2001) Prion protein protects human neurons against bax-mediated apoptosis. J Biol Chem 276:39145–39149. doi:10.1074/jbc.C100443200

    Article  Google Scholar 

  119. Zhang Y, Tounekti O, Akerman B et al (2001) 17-beta-estradiol induces an inhibitor of active caspases. J Neurosci 21:RC176. doi:20015731 [pii]

    Google Scholar 

  120. Zhang Y, McLaughlin R, Goodyer C, LeBlanc A (2002) Selective cytotoxicity of intracellular amyloid β peptide1-42 through p53 and Bax in cultured primary human neurons. J Cell Biol 156:519–529. doi:10.1083/jcb.200110119

    Article  Google Scholar 

  121. Slotkin JR, Chakrabarti L, Hai ND et al (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236:3393–3401. doi:10.1002/dvdy.21235

    Article  Google Scholar 

  122. Candeloro P, Tirinato L, Malara N et al (2011) Nanoparticle microinjection and Raman spectroscopy as tools for nanotoxicology studies. Analyst 136:4402. doi:10.1039/c1an15313g

    Article  Google Scholar 

  123. Ehrenberg M, McGrath JL (2005) Binding between particles and proteins in extracts: Implications for microrheology and toxicity. Acta Biomater. doi:10.1016/j.actbio.2005.02.002

    Google Scholar 

  124. Freshney RI (2011) Culture of animal cells: a manual of basic technique and specialized applictions, 6th edn.

    Google Scholar 

  125. Lappe-Siefke C, Maas C, Kneussel M (2008) Microinjection into cultured hippocampal neurons: a straightforward approach for controlled cellular delivery of nucleic acids, peptides and antibodies. J Neurosci Methods 175:88–95. doi:10.1016/j.jneumeth.2008.08.004

    Article  Google Scholar 

  126. Gueroussov S, Tarnawsky SP, Cui XA et al (2010) Analysis of mRNA nuclear export kinetics in mammalian cells by microinjection. J Vis Exp. doi:10.3791/2387

    Google Scholar 

  127. Goldman RD, Spector DL (2004) Live cell imaging: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  128. Stein P, Schindler K (2011) Mouse oocyte microinjection, maturation and ploidy assessment. J Vis Exp. doi:10.3791/2851

    Google Scholar 

  129. Miller DFB, Holtzman SL, Kaufman TC (2002) Customized microinjection glass capillary needles for P-element transformations in Drosophila melanogaster. Biotechniques 33:366–375

    Google Scholar 

  130. Zhang Y, Ballas CB, Rao MP (2012) Towards ultrahigh throughput microinjection: MEMS-based massively-parallelized mechanoporation. Proc Annu Int Conf IEEE Eng Med Biol Soc EMBS 594–597. doi:10.1109/EMBC.2012.6346001

  131. Adamo A, Roushdy O, Dokov R et al (2013) Microfluidic jet injection for delivering macromolecules into cells. J Micromech Microeng 29:997–1003. doi:10.1088/0960-1317/23/3/035026

    Google Scholar 

  132. Aten QT, Jensen BD, Tamowski S et al (2012) Nanoinjection: pronuclear DNA delivery using a charged lance. Transgenic Res. doi:10.1007/s11248-012-9610-6

    Google Scholar 

  133. Chen X, Kis A, Zettl A, Bertozzi CR (2007) A cell nanoinjector based on carbon nanotubes. Proc Natl Acad Sci U S A. doi:10.1073/pnas.0700567104

    Google Scholar 

  134. Yum K, Wang N, Yu M-F (2010) Nanoneedle: a multifunctional tool for biological studies in living cells. Nanoscale. doi:10.1039/b9nr00231f

    Google Scholar 

  135. Meister A, Gabi M, Behr P et al (2009) FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. doi:10.1021/nl901384x

    Google Scholar 

  136. Lacal JC, Perona R, Feramisco J (1999) Microinjection. Springer

    Google Scholar 

  137. Becattini G, Mattos LS, Caldwell DG (2013) A visual targeting system for the microinjection of unstained adherent cells. Comput Biol Med. doi:10.1016/j.compbiomed.2012.11.015

    Google Scholar 

  138. Wang W, Sun Y, Zhang M et al (2008) A system for high-speed microinjection of adherent cells. Rev Sci Instrum. doi:10.1063/1.3006000

    Google Scholar 

  139. Wang W, Liu X, Gelinas D et al (2007) A fully automated robotic system for microinjection of zebrafish embryos. PLoS ONE. doi:10.1371/journal.pone.0000862

    Google Scholar 

  140. Xie Y, Sun D, Liu C et al (2010) A force control approach to a robot-assisted cell microinjection system. Int J Rob Res 29:1222–1232. doi:10.1177/0278364909354325

    Article  Google Scholar 

  141. Duselis AR, Vrana PB (2007) Retrieval of mouse oocytes. J Vis Exp 185. doi:10.3791/185

  142. Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Induction of acrosome reaction in human spermatozoa used for subzonal insemination. Hum Reprod 7:248–254

    Google Scholar 

  143. Gregory DW, Cocking EC (1965) The large-scale isolation of protoplasts from immature tomato fruit. J Cell Biol 24(1):143–146

    Google Scholar 

  144. Power JB, Cocking EC (1970) Isolation of leaf protoplasts: macromolecule uptake and growth substance response. J Exp Bot 21:64–70. doi:10.1093/jxb/21.1.64

    Article  Google Scholar 

  145. From P, Avena THE, By A (1965) Protoplasts from the Avena coleoptile. Proc Natl Acad Sci U S A 54:56–64

    Article  Google Scholar 

  146. Morikawa H, Yamada Y (1985) Capillary microinjection into protoplasts and intranuclear localization of injected materials. 26:229–236

    Google Scholar 

  147. Stein P, Svoboda P (2006) Microinjection of dsRNA into mouse oocytes and early embryos. CSH Protoc. doi:10.1101/pdb.prot4511

    Google Scholar 

  148. Taverna E, Haffner C, Pepperkok R, Huttner WB (2011) A new approach to manipulate the fate of single neural stem cells in tissue. Nat Neurosci 15:329–337. doi:10.1038/nn.3008

    Article  Google Scholar 

  149. Evans T (2006) Transformation and microinjection. WormBook 1–15. doi:10.1895/wormbook.1.108.1

  150. Xu Q (1999) Microinjection into zebrafish embryos. Methods Mol Biol 127:125–132. doi:10.1385/1-59259-678-9:125

    Article  Google Scholar 

  151. Ringrose L (2009) Transgenesis in Drosophila melanogaster. Methods Mol Biol 561:3–19. doi:10.1007/978-1-60327-019-9_1

    Article  Google Scholar 

  152. Juarez MT, Patterson RA, Li W, McGinnis W (2013) Microinjection wound assay and in vivo localization of epidermal wound response reporters in Drosophila embryos. J Vis Exp e50750. doi:10.3791/50750

  153. Devroey P, Van Steirteghem A (2004) A review of ten years experience of ICSI. Hum Reprod Update 10:19–28. doi:10.1093/humupd/dmh004

    Google Scholar 

  154. Cousineau TM, Domar AD (2007) Psychological impact of infertility. Best Pract Res Clin Obstet Gynaecol 21:293–308. doi:10.1016/j.bpobgyn.2006.12.003

    Article  Google Scholar 

  155. Prausnitz MR (2004) Microneedles for transdermal drug delivery. Adv Drug Deliv Rev 56:581–587. doi:10.1016/j.addr.2003.10.023

    Article  Google Scholar 

  156. Prausnitz MR, Langer R (2008) Transdermal drug delivery. Nat Biotechnol 26:1261–1268. doi:10.1038/nbt.1504

    Article  Google Scholar 

  157. Prausnitz MR, Mikszta JA, Cormier M, Andrianov AK (2009) Microneedle-based vaccines, pp 369–393

    Google Scholar 

  158. Laurent PE, Bonnet S, Alchas P et al (2007) Evaluation of the clinical performance of a new intradermal vaccine administration technique and associated delivery system. Vaccine 25:8833–8842. doi:10.1016/j.vaccine.2007.10.020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muniesh Muthaiyan Shanmugam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Shanmugam, M.M., Santra, T.S. (2016). Microinjection for Single-Cell Analysis. In: Tseng, FG., Santra, T. (eds) Essentials of Single-Cell Analysis. Series in BioEngineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49118-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49118-8_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49116-4

  • Online ISBN: 978-3-662-49118-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics