Skip to main content

Advanced ZrO2-Based Ceramic Nanocomposites for Optical and Other Engineering Applications

  • Chapter
  • First Online:
Composite Materials

Abstract

Although the traditional ceramics cover the major production of ceramic industries (in terms of volume as well as the selling price), a variety of new ceramics has been immersing progressively with better properties and performances. The chapter addresses zirconia and its nanocomposites, and their performances in thermal and chemical barrier coating, buffer layer for high temperature superconducting films, ball heads for hip replacements, and automobiles. Specific applications include optical systems and devices, optoelectronics, optical waveguides, optical data storage systems, optical communications, optical displays, and series of optical and/or biological sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson AH (1954) The theory of metals. Cambridge Press, New York

    Google Scholar 

  2. Coutts TJ (1974) Electrical conduction in thin metal films. Elsevier, New York

    Google Scholar 

  3. Ashcroft NW, Mermin ND (1976) Solid state physics. WB Saunders, Philadelphia

    Google Scholar 

  4. Colombo P (2006) Conventional and novel processing methods for cellular ceramics. Philos Trans R Soc A 364:109

    Article  Google Scholar 

  5. Farah AA, Hall N, Morin S, Pietro WJ (2006) Poly(ε-caprolactone)-block-polystyrene metallopolymers via sequential ROP and ATRP condition with in situ generated ruthenium catalyst. Polymer 47:4282

    Article  Google Scholar 

  6. Motaung DE, Malgas GF, Christopher JA, Mavundla SE, Clive JO, Knoesen D (2009) The influence of thermal annealing on the morphology and structural properties of a conjugated polymer in blends with an organic acceptor material. J Mater Sci 44:3192

    Article  Google Scholar 

  7. Lucas JP, Moody NR, Robinson SL, Hanrock J, Hwang RQ (1995) Determining fracture toughness of vitreous silica glass. Scripta Mater 35:743

    Article  Google Scholar 

  8. Tomozawa M (2001) Silicon-based materials and devices. In: Nalwa HS (ed) Hand book of nanostructured materials and nanotechnology. Academic, New York, p 127

    Google Scholar 

  9. Břuning R, Levelut C, Faivre A, LeParc R, Simon JP, Bley F, Hazemann JL (2005) Characterization of the glass transition in vitreous silica by temperature scanning small-angle X-ray scattering. Europhys Lett 70:211

    Article  Google Scholar 

  10. Wang J, Lin QH, Zhou RQ, Xu BK (2002) Humidity sensor based on composite materials of nano-Bati O3 and polymer RMX. Sens Actuators B 81:248

    Article  Google Scholar 

  11. Li N, Wang J, Li M (2003) Electrochemistry at carbon nanotube electrodes. Rev Anal Chem 22:19

    Article  Google Scholar 

  12. Cho HJ, Choi GM (2008) Effect of milling methods on performance of Ni-Y2O3-stabilized ZrO2 anode for solid oxide fuel cell. J Power Sources 176:96

    Article  Google Scholar 

  13. Wohlfarth EP (1982) Ferromagnetic materials. North Holland, New York

    Google Scholar 

  14. O’Handley RC (2000) Modern magnetic materials principles and applications. Wiley, New York

    Google Scholar 

  15. Zhua XH, Li J, Zheng DN (2007) Frequency and temperature dependence of tunable dielectric properties of Ba(Zr0.2Ti0.8)O3 thin films grown on (001) MgO. Appl Phys Lett 90:142913

    Article  Google Scholar 

  16. De Groot RA, Mueller FM, Van Engen PG, Buschow KHJ (1983) New class of materials: half metallic ferromagnets. Phys Rev Lett 50:2024

    Article  Google Scholar 

  17. Buschow KHJ (1991) Handbook of magnetic materials. North-Holland, Amsterdam

    Google Scholar 

  18. Garter M, Scofield J, Birkhahn R, Steckl AJ (1999) Visible and infrared rare-earth-activated electroluminescence from indium tin oxide Schottky diodes to GaN:Er on Si. Appl Phys Lett 74:182

    Article  Google Scholar 

  19. Huh C, Lee JM, Kim DJ, Park SJ (2002) Improvement in light-output efficiency of InGaN/GaN multiple-quantum well light-emitting diodes by current blocking layer. J Appl Phys 92:2248

    Article  Google Scholar 

  20. Xu HY, Liu YC, Liu YX, Xu CS, Shao CL, Mu R (2005) Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl Phys B 80:871

    Article  Google Scholar 

  21. Lakshminarasimhan N, Varadaraju UV (2005) White-light generation in Sr2SiO4:Eu2+, Ce3+ under near-UV excitation. J Electrochem Soc 152:H152

    Article  Google Scholar 

  22. Liu Y, Xu CN, Matsui H, Imamura T, Watanabe T (2000) Preparation and luminescence of rare-earth-activated Y2SiO5 thin films by metallorganic decomposition. J Lumin 87–89:1297

    Article  Google Scholar 

  23. Heber J, Mühlig C, Triebel W, Danz N, Thielsch R, Kaiser N (2002) Deep UV laser induced luminescence in oxide thin films. Appl Phys A 75:637

    Article  Google Scholar 

  24. Sreseli OM, Goryachev DN, Belyakov LV, Vul SP, Zakharova IB, Alekseeva EA (2004) Effect of a fullerene coating on the photoluminescence of porous silicon. Semiconductors 38:120

    Article  Google Scholar 

  25. Louisa C, Rouxa S, Ledouxa G, Dujardina C, Tillementa O, Cheng BL, Perriat P (2006) Luminescence enhancement by energy transfer in core-shell structures. Chem Phys Lett 429:157

    Article  Google Scholar 

  26. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152

    Article  Google Scholar 

  27. Cai W, Zhang Y, Jia J, Zhang L (1998) Semiconducting optical properties of silver/silica mesoporous composite. Appl Phys Lett 73:2709

    Article  Google Scholar 

  28. Murakami S, Herren M, Morita M (1998) Excitation energy transfer and low-temperature anomaly in luminescence of RE3I codoped PLZT ceramics. J Lumin 76&77:460

    Article  Google Scholar 

  29. Ishizaka T, Nozaki R, Kurokawa Y (2002) Luminescence properties of Tb3+ and Eu3+ -doped alumina films prepared by sol-gel method under various conditions and sensitized luminescence. J Phys Chem Solids 63:613

    Article  Google Scholar 

  30. Mohanty P, Ram S (2003) Enhanced photoemission in dispersed Eu2O3 nanoparticles in amorphous Al2O3. J Mater Chem 13:3021

    Article  Google Scholar 

  31. Ram S, Kundu TK (2004) Synthesis and unusual electron paramagnetic resonance spectrum of metastable nanoclusters of ZnO semiconductor crystallites. J Nanosci Nanotech 4:1076

    Article  Google Scholar 

  32. Bang J, Yang H, Holloway PH (2005) Enhanced luminescence of SiO2:Eu3+ by energy transfer from ZnO nanoparticles. J Chem Phys 123:084709

    Article  Google Scholar 

  33. Kawai C (2005) Porous silicon nitride ceramic phosphors. J Mater Sci 40:2591

    Article  Google Scholar 

  34. Balakrishnan S, Gun’ko YK, Perova TS, Rafferty A, Astrova EV, Moore RA (2005) Porous silicon – rare earth doped xerogel and glass composites. Phys Status Solidi (a) 202:1693

    Article  Google Scholar 

  35. Mohanty P, Ram S (2006) Light emission associated with the 5D0 → 7F3 forbidden transition in Eu3+ cations dispersed in an Eu3+: Al2O3 mesoporous structure. Philos Mag Lett 86:375

    Article  Google Scholar 

  36. Meltzer RS, Hong KS (2000) Electron-phonon interactions in insulating nanoparticles: Eu2O3. Phys Rev B 61:3396

    Article  Google Scholar 

  37. Reimanis IE (1997) A review of issues in the fracture of interfacial ceramics and ceramic composites. Mater Sci Eng A 237:159

    Article  Google Scholar 

  38. Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley-VCH, Germany

    Book  Google Scholar 

  39. Tjong SC (2006) Structural and mechanical properties of polymer nanocomposites. Mater Sci Eng R 53:73

    Article  Google Scholar 

  40. Nalwa HS (2000) Handbook of nanostructured materials and nanotechnology. Academic, New York

    Google Scholar 

  41. Thakoor AP, Raj B, Pandya DK, Chopra KL (1981) Metal chalcogenide-oxide composite coatings prepared by spray pyrolysis. Thin Solid Films 83:231

    Article  Google Scholar 

  42. Gai PL, Harmer MA (2002) Surface atomic defect structures and growth of gold nanorods. Nano Lett 2:771

    Article  Google Scholar 

  43. Shenhar R, Rotello VM (2002) Nanoparticles: scaffolds and building blocks. Acc Chem Res 36:549

    Article  Google Scholar 

  44. Kamat PV (2002) Photoinduced transformations in semiconductor-metal nanocomposite assemblies. Pure Appl Chem 74:1693

    Article  Google Scholar 

  45. Chen MMY, Katz A (2002) Steady-state fluorescence-based investigation of the interaction between protected thiols and gold. Langmuir 18:2413

    Article  Google Scholar 

  46. Gao Y, Jiang P, Liu DF, Yuan HJ, Yan XQ, Zhou ZP, Wang JX, Song L, Liu LF, Zhou WY, Wang G, Wang CY, Xie SS (2003) Synthesis, characterization and self-assembly of silver nanowires. Chem Phys Lett 380:146

    Article  Google Scholar 

  47. Thomas KG, Kamat PV (2003) Chromophore-functionalized gold nanoparticles. Acc Chem Res 36:888

    Article  Google Scholar 

  48. Edelstein AS, Cammaratra RC (eds) (1996) Nanomaterials: synthesis, properties and applications. Taylor & Francis Group, New York

    Google Scholar 

  49. Xu R, Wang D, Zhang J, Li Y (2006) Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem Asian J 1:888

    Article  Google Scholar 

  50. Hansma PK, Turner PJ, Ruoff RF (2007) Optimized adhesives for strong, lightweight, damage-resistant, nanocomposite materials new insights from natural materials. Nanotechnology 18:44026

    Article  Google Scholar 

  51. Brydson RM, Hammond C (2000) Genetic methodologies for nanotechnology: classification and fabrication. In: Kelsall RW, Hamley IW, Geoghegan M (eds) Nanoscale science and technology. Wiley, Germany, p 1

    Google Scholar 

  52. Sōmiya S, Akiba T (1999) A high potential material-zirconia. Bull Mater Sci 22:207

    Article  Google Scholar 

  53. Li Y, Meng GW, Zhang LD, Phillip F (2000) Ordered semiconductor ZnO nanowires Arrays and their photoluminescence properties. Appl Phys Lett 76:2011

    Article  Google Scholar 

  54. Huang MH, Mao S, Feick H, Yan H, Wu Y, Weber E, Russo R, Yang P (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897

    Article  Google Scholar 

  55. Huang MH, Wu Y, Feick H, Tran N, Weber E, Yang P (2001) Catalytic growth of zinc oxide nanowires by vapor transport. Adv Mater Res 13:113

    Article  Google Scholar 

  56. Kong YC, Yu DP, Zhang B, Fang W, Feng SQ (2001) Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach. Appl Phys Lett 78:407

    Article  Google Scholar 

  57. Sands D, Brunson KM, Cheung CC, Thomas CB (1988) ZnS1-xOx: Mn and ZnS1-x Sex: Mn as thin film electroluminescent materials. Semicond Sci Technol 3:816

    Article  Google Scholar 

  58. Blasse G, Grabmaier BC (1994) Luminescent materials. Springer, Heidelberg

    Book  Google Scholar 

  59. Justel T, Krupa J, Wiechert DU (2001) VUV spectroscopy of luminescent materials for plasma display panels and Xe discharge lamps. J Lumin 93:179

    Article  Google Scholar 

  60. Minami T (2003) Oxide thin-film electroluminescent devices and materials. Sol State Elect 47:2237

    Article  Google Scholar 

  61. Wilk GD, Wallance RM, Anthony JM (2001) High-k gate dielectrics current status and materials properties considerations. J Appl Phys 89:5243

    Article  Google Scholar 

  62. Zhang JY, Boyd IW (2002) Structural and electrical properties of tantalum oxide films grown by photo-assisted pulsed laser deposition. Appl Surf Sci 186:40

    Article  Google Scholar 

  63. Kadoshima M, Hiratani M, Shimamoto Y, Torii K, Miki H, Kimyra S, Nabatame T (2003) Rutile-type TiO2 thin film for high-k gate insulator. Thin Solid Films 424:224

    Article  Google Scholar 

  64. Fang Q, Zhang JY, Wang ZM, Wu JX, Osullivan BJ, Hurley PK, Leedham TL, Davies H, Audier MA, Jimenez C, Senateur JP, Boyd IW (2003) Characterisation of HfO2 deposited by photo-induced chemical vapour deposition. Thin Solid Films 427:391

    Article  Google Scholar 

  65. Forst CJ, Ashman CR, Schwarz K, Blochl PE (2004) The interface between silicon and a high-k oxide. Nature 427:53

    Article  Google Scholar 

  66. Hubbard KJ, Schlom DG (1996) Thermodynamic stability of binary oxides in contact with silicon. J Mater Res 11:2757

    Article  Google Scholar 

  67. Puthenkovilakam R, Chang JP (2004) Valence band structure and band alignment at the ZrO2/Si interface. Appl Phys Lett 84:1353

    Article  Google Scholar 

  68. Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. Vac J Sci Technol B 18:1785

    Article  Google Scholar 

  69. Cao H, Xianqing Q, Luo B, Zhang Y, Tan R, Zhao M, Zhu Q (2004) Synthesis and room temperature ultraviolet photoluminescence properties of zirconia nanowires. Adv Funct Mater 14:243

    Article  Google Scholar 

  70. French RH, Glass SJ, Ohuchi FS, Xu YN, Ching WY (1994) Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B 49:5133

    Article  Google Scholar 

  71. Aita CR, Hoppe EE, Sorbello RS (2003) Fundamental optical absorption edge of undoped tetragonal zirconium dioxide. Appl Phys Lett 82:677

    Article  Google Scholar 

  72. Kralik B, Chang EK, Louie SG (1998) Structural properties and quasiparticle band structure of zirconia. Phys Rev B 57:7027

    Article  Google Scholar 

  73. Emeline A, Kataeva GV, Litke AS, Rudakova AV, Ryabchuk VK, Serpone N (1998) Spectroscopic and photoluminescence studies of a wide band gap insulating material: powdered and colloidal ZrO2 sols. ACS Langmuir 14:5011

    Article  Google Scholar 

  74. Miyazaki S (2001) Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics. J Vac Sci Technol B 19:2212

    Article  Google Scholar 

  75. Zhu LQ, Fang Q, He G, Liu M, Zhang LD (2005) Microstructure and optical properties of ultra-thin zirconia films prepared by nitrogen-assisted reactive magnetron sputtering. Nanotechnology 16:2865

    Article  Google Scholar 

  76. Liang L, Sheng Y, Xu Y, Wu D, Sun Y (2007) Optical properties of sol-gel derived ZrO2-TiO2 composite films. Thin Solid Films 515:7765

    Article  Google Scholar 

  77. Yawen Z, Shu J, Liao C, Yan CH (2002) Microstructures and optical properties of nanocrystalline rare earth stabilized zirconia thin films deposited by a simple sol-gel method. Mater Lett 56:1030

    Article  Google Scholar 

  78. Kosacki I, Petrovsky V, Anderson HU (1999) Band gap energy in nanocrystalline ZrO2:16%Y thin films. Appl Phys Lett 74:341

    Article  Google Scholar 

  79. Hartridge A, Krishna MG, Bhattacharya AK (2001) Temperature and ionic size dependence on the structure and optical properties of nanocrystalline lanthanide doped zirconia thin films. Thin Solid Films 384:254

    Article  Google Scholar 

  80. Zhu LQ, Fang Q, He G, Liu M, Zhang LD (2006) Interfacial and optical properties of ZrO2/Si by reactive magnetron sputtering. Mater Lett 60:888

    Article  Google Scholar 

  81. Zhou Y, Kojima N, Sasaki K (2008) Growth and dielectric properties of tetragonal ZrO2 films by limited reaction sputtering. J Phys D Appl Phys 41:175414

    Article  Google Scholar 

  82. Dey A, De SK (2006) Impedance and dielectric spectra in zirconia-polypyrrole hybrid nano composites. J Phys D Appl Phys 39:4077

    Article  Google Scholar 

  83. Smith DK, Newkirk W (1965) The crystal structure of baddeleyite (monoclinic ZrO2) and its relation to the polymorphism of ZrO2. Acta Cryst 18:983–991

    Article  Google Scholar 

  84. McCullough JD, Trueblood KN (1959) The crystal structure of baddeleyite (monoclinic ZrO2). Acta Cryst 12:507

    Article  Google Scholar 

  85. Ruff O, Ebert F (1929) Die formen des zirkondioxyds. Z Anorg Allg Chem 180:19

    Article  Google Scholar 

  86. Lynch CT, Vahldiek FW, Rabinson LB (1961) Monoclinic‐tetragonal transition of zirconia. J Am Ceram Soc 44:147

    Article  Google Scholar 

  87. Intrater J, Herwitt S (1961) High temperature, high vacuum, diffractometer attachment. Rev Sci Instrum 32:905

    Article  Google Scholar 

  88. Balmer ML, Lange FF, Levi CG (1994) Metastable phase selection and partitioning for Zr(1−x)AlxO(2−x/2) materials synthesized with liquid precursors. J Am Ceram Soc 77:2069

    Article  Google Scholar 

  89. Moreau S, Gervais M, Douy A (1997) Formation of metastable solid solution in the ZrO2 rich part of the system ZrO2-Al2O3. Solid State Ion 101–103:625

    Google Scholar 

  90. Mondal A, Ram S (2003) Controlled phase transformations in Al3+ stabilized ZrO2 nanoparticles via forced hydrolysis of metal cations in water. Mater Lett 53:1696

    Article  Google Scholar 

  91. Hu Michael ZC, Hunt RD, Payzant EA, Hubbard CR (1999) Nanocrystallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipitation. Methods J Am Ceram Soc 82:2313

    Article  Google Scholar 

  92. Koji M, Michiharu O (2001) Formation mechanism of hydrous zirconia particles produced by the hydrolysis of ZrOCl2 solutions: III, kinetics study for the nucleation and crystal-growth processes of primary particles. J Am Ceram Soc 84:2303

    Google Scholar 

  93. Hannink-Richard HJ, Kelly PM, Muddle BC (2000) Transformation toughening in zirconia-containing ceramics. J Am Ceram Soc 83:461

    Article  Google Scholar 

  94. Suyama R, Ashida T, Kume S (1985) Synthesis of the orthorhombic phase of ZrO2. J Am Ceram Soc 68:C314

    Article  Google Scholar 

  95. Adams DM, Leonard S, Russell DR, Cernik RJ (1991) X-ray diffraction study of hafnia under high pressure using synchrotron radiation. J Phys Chem Solids 52:1181

    Article  Google Scholar 

  96. Dewhurst JK, Lowther JE (1998) Relative stability, structure, and elastic properties of several phases of pure zirconia. Phys Rev B 57:741

    Article  Google Scholar 

  97. Lowther JE, Dewhurst JK, Leger JM, Haines J (1999) Relative stability of ZrO2 and HfO2 structural phases. Phys Rev B 60:14485

    Article  Google Scholar 

  98. Fabris S, Paxton AT, Finnis MW (2001) Free energy and molecular dynamics calculations for the cubic-tetragonal phase transition in zirconia. Phys Rev B 63:94101

    Article  Google Scholar 

  99. X-ray Powder Diffraction File JCPDS-ICDD (Joint Committee on Powder Diffraction Standards-International Centre for Diffraction Data, Swarthmore, PA) (1999) (a) 27–0997, c-ZrO2, (b) 79–1771, and 81–1327, t-ZrO2, (c) 13–0307, m-ZrO2 and (d) 33–1483, 37–1413, 79–1796, and 83–0810, o-ZrO2

    Google Scholar 

  100. X-ray Powder Diffraction File JCPDS-ICDD (Joint Committee on Powder Diffraction Standards-International Centre for Diffraction Data, Swarthmore, PA) (2002) (a) 27–0997, c-ZrO2, (b) 24–1164, t-ZrO2, (c) 13–307, m-ZrO2, and (d) 41–0017, 79–1796, 83–0810 and 37–1413, o-ZrO2.

    Google Scholar 

  101. Mondal A, Ram S (2003) Formation of a new polymorph of ZrO2 with orthorhombic crystal structure contained in a mesoporous structure. Chem Phy Lett 382:297

    Article  Google Scholar 

  102. Fabris S, Paxton AT, Finnis MW (2000) Relative energetics and structural properties of zirconia using a self-consistent tight-binding model. Phys Rev B 61:6617

    Article  Google Scholar 

  103. Ryshkewitch E (1960) Oxide ceramics: physical chemistry and technology. Academic, New York, p 3

    Google Scholar 

  104. Garvie RC, Nicholson PS (1972) Structure and thermomechanical properties of partially stabilized zirconia in the CaO-ZrO2 system. J Am Ceram Soc 55:152

    Article  Google Scholar 

  105. Garvie RC, Hannink RH, Pascoe RT (1975) Ceramic steel? Nature 258:703

    Article  Google Scholar 

  106. Kelly PM, Rose LRF (2002) The martensitic transformation in ceramics-its role in transformation toughening. Prog Mater Sci 47:463

    Article  Google Scholar 

  107. Ishida K, Hirot K, Yamaguchi O, Kume H, Inamura S, Miyamoto H (1994) Formation of zirconia solid solutions containing alumina prepared by new preparation method. J Am Ceram Soc 77:1391

    Article  Google Scholar 

  108. Tsukada T, Venigalla S, Morrone AA, Adair JH (1999) Low-temperature hydrothermal synthesis of yttrium-doped zirconia powders. J Am Ceram Soc 82:1169

    Article  Google Scholar 

  109. Xia B, Duan L, Xie Y (2000) ZrO2 nanopowders prepared by low-temperature vapor-phase hydrolysis. J Am Ceram Soc 83:1077

    Article  Google Scholar 

  110. Raghavan S, Wang H, Porter WD, Dinwiddie RB, Mayo MJ (2001) Thermal properties of zirconia co-doped with trivalent and pentavalent oxides. Acta Mater 49:169

    Article  Google Scholar 

  111. Ram S (2003) Synthesis and structural and optical properties of metastable ZrO2 nanoparticles with intergranular Cr3+/Cr4+ doping and grain surface modification. J Mater Sci 38:643

    Article  Google Scholar 

  112. Lee JH, Mori T, Li JG, Ikegami T, Takenouchi S (2001) The influence of alumina addition and its distribution upon grain boundary conduction in 15 mol% calcia-stabilized zirconia. Ceram Intern 27:269

    Article  Google Scholar 

  113. Cormack AN, Parker SC (1990) Some observations on the role of dopants in phase transitions in zirconia from atomistic simulations. J Am Ceram Soc 73:3220

    Article  Google Scholar 

  114. Schelling PK, Phillpot SR, Wolf D (2001) Mechanism of the cubic-to-tetragonal phase transition in zirconia and yttria-stabilized zirconia by molecular-dynamics simulation. J Am Ceram Soc 84:1609

    Article  Google Scholar 

  115. Sōmiya S, Bradt RC (eds) (1987) Fundamental structural ceramics. Terra Scientific, Tokyo, p 464

    Google Scholar 

  116. Ruehle M (1997) Microscopy of structural ceramics. Adv Mater 9:195

    Article  Google Scholar 

  117. Mondal A, Ram S (2003) Al3+-stabilized c-ZrO2 nanoparticles at low temperature by forced hydrolysis of dispersed metal cations in water. Solid State Ion 160:169

    Article  Google Scholar 

  118. Garvie RC (1965) The occurrence of metastable tetragonal zirconia as a crystallite size effect. J Phys Chem 69:1238

    Article  Google Scholar 

  119. Holmes H, Fuller EJ, Gamage R (1972) Heats of immersion in the zirconium oxide-water system. J Phys Chem 76:1497

    Article  Google Scholar 

  120. Livey DT, Murray P (1956) Surface energies of solid oxides and carbides. J Am Ceram Soc 39:363

    Article  Google Scholar 

  121. Bailey JE, Lewis D, Librant ZM, Porter LJ (1965) Phase transformations in milled zirconia. Trans J Br Ceram Soc 71:25

    Google Scholar 

  122. Murase Y, Kato E (1983) Tetragonal-monoclinic phase transformation of ZrO2. J Am Ceram Soc 66:196

    Article  Google Scholar 

  123. Christiansen A, Carter EA (1998) First-principles study of the surfaces of zirconia. Phys Rev B 58:8050

    Article  Google Scholar 

  124. Chraska T, King AH, Berndt CC (2000) On the size-dependent phase transformation in nanoparticulate zirconia. Mater Sci Eng A 286:169

    Article  Google Scholar 

  125. Livage J, Doi K, Mazieres C (1968) Nature and thermal evolution of amorphous hydrated zirconium oxide. J Am Ceram Soc 51:349

    Article  Google Scholar 

  126. Tani E, Yoshimura M, Sōmiya S (1983) Revised phase diagram of the system ZrO2-CeO2 below 1400°C. J Am Ceram Soc 66:506

    Article  Google Scholar 

  127. Osendi MI, Moya JS, Serna CJ, Soria J (1985) Metastability of tetragonal zirconia powders. J Am Ceram Soc 68:135

    Article  Google Scholar 

  128. Mitshuhashi T, Ichiara M, Tatsuke V (1974) Characterization and stabilization of metastable tetragonal ZrO2. J Am Ceram Soc 57:97

    Article  Google Scholar 

  129. Skandan G, Halm H, Roddy M, Cannon WR (1994) Ultrafine-grained dense monoclinic and tetragonal zirconia. J Am Ceram Soc 77:1706

    Article  Google Scholar 

  130. Winterer M, Nitsche R, Redfern SAT, Schmahl WW, Hahn H (1995) Phase stability in nanostructured and coarse grained zirconia at high pressures. Nanostruct Mater 5:679

    Article  Google Scholar 

  131. Nitsche R, Rodewald M, Skandan G, Fuess H, Halm H (1996) HRTEM study of nano crystalline zirconia powders. Nanostruct Mater 7:535

    Article  Google Scholar 

  132. Khan MS, Islam MS, Bates DR (1998) Cation doping and oxygen diffusion in zirconia a combined atomistic simulation and molecular dynamics study. J Mater Chem 8:2299

    Article  Google Scholar 

  133. Srinivasan R, Rice L, Davis BH (1990) Effect of pH on crystal phase of ZrO2 from solution and calcined at 600°C. J Am Ceram Soc 68:135

    Google Scholar 

  134. Kuwabara A, Katamura J, Ikuhara Y, Sakuma T (2002) Influence of interaction between neighboring oxygen ions on phase stability in cubic zirconia. J Am Ceram Soc 85:2557

    Article  Google Scholar 

  135. Cohen I, Schaner BE (1963) A metallographic and x-ray study of the UO2-ZrO2 system. J Nucl Mater 9:18

    Article  Google Scholar 

  136. Li P, Chen IW, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization-An X-ray absorption study: II, trivalent dopants. J Am Ceram Soc 77:1281

    Article  Google Scholar 

  137. Hellmanm JR, Stinican VS (1983) Stable and metastable phase relations in the system ZrO2-CaO. J Am Ceram Soc 66:260

    Article  Google Scholar 

  138. Murase Y, Kato E, Diamon K (1986) Stability of ZrO2 phases in ultrafine ZrO2-Al2O3 mixtures. J Am Ceram Soc 69:83

    Article  Google Scholar 

  139. Scott HG (1975) Phase relationships in the zirconia-yttria system. J Mater Sci 10:1527

    Article  Google Scholar 

  140. Ho SM (1982) On the structural chemistry of zirconium oxide. Mater Sci Eng 54:23

    Article  Google Scholar 

  141. Li P, Chen IW, Penner-Hahn JE (1994) Effect of dopants on zirconia stabilization-An X-ray absorption study: I, trivalent dopants. J Am Ceram Soc 77:118

    Article  Google Scholar 

  142. Itoh T (1985) Particle and crystallite sizes of ZrO2 powder obtained by the calcination of hydrous zirconia. J Mater Sci Lett 4:431

    Article  Google Scholar 

  143. Cotton FA, Wilkinson G (1972) Advanced inorganic chemistry. Wiley-Inter science, New York

    Google Scholar 

  144. Kauffman AJ, Dilling ED (1955) The metallurgy of zirconium. McGraw-Hill, New York, p 69

    Google Scholar 

  145. Mohammed NA, Daher AM (2002) Preparation of high-purity zirconia from Egyptian zircon: an anion-exchange purification process. Hydrometallurgy 65:103

    Article  Google Scholar 

  146. Yoshimura M (1988) Phase stability of zirconia. J Am Ceram Soc Bull 67:1950

    Google Scholar 

  147. Dodd AC, Mc Cormick PG (2002) Synthesis of nanocrystalline ZrO2 powders by mechanochemical reaction of ZrCl4 with LiOH. J Eur Ceram Soc 22:1823

    Article  Google Scholar 

  148. Tsuzuki T, McCormick PG (2001) Synthesis of ultrafine ceria powders by mechanochemical processing. J Am Ceram Soc 84:1453

    Article  Google Scholar 

  149. Michel D, Faudot E, Gaffet E, Mazerolles L (1993) Stabilized zirconias prepared by mechanical alloying. J Am Ceram Soc 76:2884

    Article  Google Scholar 

  150. Rana S, Ram S, Roy SK (2002) Processing of Cr3+/Cr4+ stabilized c-ZrO2 nanoparticles through thermomechanical attrition. Mater Manuf Process 17:529

    Article  Google Scholar 

  151. Johnson DW (1982) In: Chin GY (ed) Advances in powder technology. American Society for Metals, Metal Park, p 23

    Google Scholar 

  152. Skadan G, Hahn H, Roddy M, Cannon WR (1994) Ultrafine-grained dense monoclinic and tetragonal zirconia. J Am Ceram Soc 77:1706

    Article  Google Scholar 

  153. Biringer R (1989) Nanocrystalline materials. Mater Sci Eng A 117:33

    Article  Google Scholar 

  154. Okazaki K, Maiwa H, Ichinose N (1994) Preparation of (Pb, La)TiO3 thin films by multiple cathode sputtering. In: Bhalla AS, Nair KM, Lloyd IK, Yanagida H, Payne DA (eds) Ceramic transactions, ferroic materials: design, preparation, and characteristics, vol 43. The American Ceramic Society, Ohio, pp 15–26

    Google Scholar 

  155. Frantti J, Lantto VJ (1994) Characterization of Pb0.97Nd0.02(Zr0.55Ti0.45)O3 thin films prepared by pulsed laser ablation. J Appl Phys 76:2139

    Article  Google Scholar 

  156. Malinosfsky WW, Babbit RK (1961) Fine-grained ferrites. I. Nickel ferrite. J Appl Phys 32:2375

    Google Scholar 

  157. Nagashima M, Nakayama T, Yamanaka S, Fujikane M, Hayashi Y, Sekino T, Kusunose T, Niihara K (2003) Fabrication of metastable ZrO2-x single nano-sized particles. Mater Lett 57:4023

    Article  Google Scholar 

  158. Bondioli F, Ferrari AM, Leonelli C, Siligardi C, Pellacani GC (2001) Microwave-hydrothermal synthesis of nanocrystalline zirconia powders. J Am Ceram Soc 84:2728

    Article  Google Scholar 

  159. Noh HJ, Seo DS, Kim H, Lee JK (2003) Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Mater Lett 57:2425

    Article  Google Scholar 

  160. Yoshimura M, Sōmiya S (1999) Hydrothermal synthesis of crystallized nano-particles of rare earth-doped zirconia and hafnia Mater. Chem Phys 61:1

    Google Scholar 

  161. Tsukada T, Venigalla S, Morrone AA, Adair JH (1999) Low temperature hydrothermal synthesis of yttrium-doped zirconia powders. J Am Ceram Soc 82:1169

    Article  Google Scholar 

  162. Morgan PDE (1984) Synthesis of 6-nm ultrafine monoclinic zirconia. J Am Ceram Soc 67:C204

    Article  Google Scholar 

  163. Komarneni S, Roy R, Li QH (1992) Microwave hydrothermal synthesis of ceramic powder. Mater Res Bull 2:1393

    Article  Google Scholar 

  164. Komarneni S, D’Arrigo MC, Leonelli C, Pellacani GC, Katsuki H (1998) Microwave-hydrothermal synthesis of nanophase ferrites. J Am Ceram Soc 88:3041

    Google Scholar 

  165. Sōmiya S, Akiba T (1999) A high potential material zirconia. Bull Mater Sci 22:207

    Article  Google Scholar 

  166. Sōmiya S, Yoshimura M, Nakai Z, Nakai K, Hishinuma K, Kumaki T (1986) Ceramic microstructural development of hydrothermal powder and ceramics microstructure. In: Pask JA, Evans AG (eds) Ceramic microstructures: role of interfaces. Plenum, New York, p 465

    Google Scholar 

  167. Sōmiya S, Akiba T (1999) Hydrothermal zirconia powders: a bibliography. J Eur Ceram Soc 19:81

    Article  Google Scholar 

  168. Dell’Agli G, Mascolo G (2000) Hydrothermal synthesis of ZrO2-Y2O3 solid solutions at low temperature. J Eur Ceram Soc 20:139

    Article  Google Scholar 

  169. Xie Y (1999) Preparation of ultrafine zirconia particles. J Am Ceram Soc 82:768

    Article  Google Scholar 

  170. Dominguez JM, Hernandez JL, Sandoval G (2000) Surface and catalytic properties of Al2O3-ZrO2 solid solutions prepared by sol–gel methods. Appl Catal A Gen 197:119

    Article  Google Scholar 

  171. Yoshimura M, Oh ST, Sando M, Niihara K (1999) Crystallization and microstructural characterization of ZrO2 (3 mol% Y2 O2) nano-sized powders with various Al2O3 contents. J Alloys Comp 290:284

    Article  Google Scholar 

  172. Córdova-Martínez W, De la Rosa-Cruz E, Díaz-Torres LA, Salas P, Montoya A, Avendaño M, Rodríguez RA, Barbosa-García O (2002) Nanocrystalline tetragonal zirconium oxide stabilization at low temperatures by using rare earth ions: Sm3+ and Tb3+. Opt Mater 20:263

    Article  Google Scholar 

  173. Jana S, Biswas PK (1997) Characterization of oxygen deficiency and trivalent zirconium in sol-gel derived zirconia films. Mater Lett 30:53

    Article  Google Scholar 

  174. Harizanov O, Ivanova T, Harizanova A (2001) Study of sol–gel TiO2 and TiO2 – MnO obtained from a peptized solution. Mater Lett 49:165

    Article  Google Scholar 

  175. Ehrhart G, Capeon B, Robbe O, Boy P, Turrell S, Bouazaoui M (2006) Structural and optical properties of n-propoxide sol-gel derived ZrO2 thin films. Thin Solid Films 496:227

    Article  Google Scholar 

  176. Hipolite MG, Galcony C, Frutis MAA, Nieto JA (2001) Synthesis and characterization of luminescent ZrO2: Mn, Cl powders. Appl Phys Lett 79:4369

    Article  Google Scholar 

  177. Liang L, Xu Y, Wu D, Sun Y (2009) A simple sol-gel route to ZrO2 films with high optical performances. Mater Chem Phys 114:252

    Article  Google Scholar 

  178. Reisfeld R, Zelner M, Patra A (2000) Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. J Alloys Comp 300–301:147

    Article  Google Scholar 

  179. Reisfeld R, Saraidarov T, Pietraszkiewick M, Lis S (2001) Luminescence of europium(III) compounds in zirconia xerogels. Chem Phys Lett 349:266

    Article  Google Scholar 

  180. Zhang Y, Jin S, Liao C, Yan CH (2002) Microstructures and optical properties of nanocrystalline rare earth stabilized zirconia thin films deposited by a simple sol-gel method. Mater Lett 56:1030

    Article  Google Scholar 

  181. Pechini MA (1967) Method of preparing +2 valent metal yttrium and rare earth ferrites. U. S. Patent US 3438723 A

    Google Scholar 

  182. Kikkawa S, Kijima A, Hirota K, Yamaguchi O (2002) Soft solution preparation methods in a ZrO2-Al2O3 binary system. Solid State Ion 151:359

    Article  Google Scholar 

  183. Tai LW, Lessing PA (1992) Modified resin-intermediate processing of perovskite powders: Part I. Optimization of polymeric precursors. J Mater Res 7:502

    Article  Google Scholar 

  184. Quinelato AL, Longo E, Perazolli LA, Varela J (2000) Effect of ceria content on the sintering of ZrO2 based ceramics synthesized from a polymeric precursor. J Euro Ceram Soc 20:1077

    Article  Google Scholar 

  185. Laberty-Robert C, Ansart F, Deloget C, Gaudon M, Rousset A (2001) Powder synthesis of nanocrystalline ZrO2-8% Y2O3 via a polymerization route. Mater Res Bull 36:2083

    Article  Google Scholar 

  186. Muccillo ENS, Rocha RA, Muccillo R (2002) Preparation of Gd2O3-doped ZrO2 by polymeric precursor techniques. Mater Lett 53:353

    Article  Google Scholar 

  187. Zhang Y, Li A, Yan Z, Xu G, Liao C, Yan C (2003) (ZrO2)0.85(REO1,5)0.15 (RE = Sc, Y) solid solutions prepared via three Pechini-type gel routes: sol-gel formation and calcination behaviors. J Solid State Chem 171:434

    Article  Google Scholar 

  188. Bhaduri S, Bhaduri SB (1997) Enhanced low temperature toughness of Al2O3-ZrO2 nano/nanocomposites. Nanostruct Mater 8:755

    Article  Google Scholar 

  189. Juáre RE, Lamas DG, Lascalea GE, Walsöe de Reca NE (2000) Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate – citrate combustion route. J Eur Ceram Soc 20:133

    Article  Google Scholar 

  190. Vallet-Regí M, Nicolopoulos S, Román J, Martíneza JL, González-Calbetb JM (1997) Structural characterization of ZrO2 nanoparticles obtained by aerosol pyrolysis. J Mater Chem 7:1017

    Article  Google Scholar 

  191. Cho SY, Kim IT, Kim DY, Park SJ, Kim BK, Lee JH (1997) Effects of H2O2 on the morphology of ZrO2, powder prepared by ultrasonic spray pyrolysis. Mater Lett 32:271

    Article  Google Scholar 

  192. Xiaming D, Qing-feng L, Yuying T (1993) Study of phase formation in spray pyrolysis of ZrO2 and ZrO2-; Y2O3 powders. J Am Ceram Soc 76:760

    Article  Google Scholar 

  193. Jayaram V, Mishra RS, Majumdar B, Lesher C, Mukherjee A (1998) Dense nanometric ZrO2-AI2O3 from spray-pyrolysed powders. Coll Surf A: Physicochem Eng Aspects 133:25

    Article  Google Scholar 

  194. Stelzer NHJ, Schoonman J (1996) Synthesis of terbia-doped yttria-stabilized zirconia thin films by electrostatic spray deposition (ESD). J Mater Synth Process 4:429

    Google Scholar 

  195. Ruiz H, Vesteghem H, Di Giampaolo AR, Lira J (1997) Zirconia coatings by spray pyrolysis. Surf Coat Technol 89:77

    Article  Google Scholar 

  196. Peshev P, Stambolova I, Vassilev S, Stefanov P, Blaskov V, Starbova K, Starbov N (2003) Spray pyrolysis deposition of nanostructured zirconia thin films. Mater Sci Eng B 97:106

    Article  Google Scholar 

  197. Hong JS, De la Torre SD, Miyamoto K, Miyamoto H, Gao L (1998) Crystallization of Al2O3/ZrO2 solid solution powders prepared by coprecipitation. Mater Lett 37:6

    Article  Google Scholar 

  198. Kikkawa S, Kijima A, Hirota K, Yamamoto O (2002) Crystal structure of zirconia prepared with alumina by coprecipitation. J Am Ceram Soc 85:721

    Article  Google Scholar 

  199. Vasylkiv O, Sakka Y (2000) Nonisothermal synthesis of yttria-stabilized zirconia nanopowder through oxalate processing: I, characteristics of Y-Zr oxalate synthesis and its decomposition. J Am Ceram Soc 83:2196

    Article  Google Scholar 

  200. Huang C, Tang Z, Zhang Z (2001) Differences between zirconium hydroxide (Zr(OH)4. nH2O) and hydrous zirconia (ZrO2.nH2O). J Am Ceram Soc 84:1637

    Article  Google Scholar 

  201. Gutzov S, Ponahlo J, Lengauer CL, Beran A (1994) Phase characterization of precipitated zirconia. J Am Ceram Soc 77:1649

    Article  Google Scholar 

  202. Moore DA, Ferguson IF (1982) Zirconia-stabilized cubic Europia. J Am Ceram Soc 65:414

    Article  Google Scholar 

  203. Fiona CMW, Sager FCW, Sibelt GMN, Henk V (2001) Dense nanostructured t-ZrO2 coatings at low temperatures via modified emulsion precipitation. Adv Mater 13:514

    Article  Google Scholar 

  204. Sager W, Eicke HF, Sun W (1993) Precipitation of nanometre-sized uniform ceramic particles in emulsions. Colloid Surf A 79:199

    Article  Google Scholar 

  205. Venkatachari KR, Huang D, Ostrander SP, Schulze WA, Stangle GC (1995) A combustion synthesis process for synthesizing nanocrystalline zirconia powders. J Mater Res 10:748

    Article  Google Scholar 

  206. Huang C, Tang Z, Zhang Z (2001) Differences between zirconium hydroxide (Zr(OH)4 · nH2O) and hydrous zirconia (ZrOnH2O). J Am Ceram Soc 84:1637

    Article  Google Scholar 

  207. Hirano S, Yoshinaka M, Hirota K, Yamaguchi O (1996) Formation, characterization, and hot isostatic pressing of Cr2O3-doped ZrO2 (0.3mol%Y2O3) prepared by hydrazine method. J Am Ceram Soc 79:171

    Article  Google Scholar 

  208. Ram S (1994) Kinetics of the desorption of interstitial hydrogen in stable Nd2Fe14BHx, x > 5. Phys Rev B 49:9632

    Article  Google Scholar 

  209. Gonella F, Mattei G, Mazzoldi P, Battaglin G, Quaranta A, De G, Montecchi M (1999) Structural and optical properties of silver-doped zirconia and mixed zirconia-silica matrices obtained by sol-gel processing. Chem Mater 11:814

    Article  Google Scholar 

  210. Shrirer DF, Atkins PW, Langford CH (1990) Inorganic chemistry. Wiley, New York, p 434

    Google Scholar 

  211. Ram S, Kanik R, Shukla BS (1992) Optical absorption and EPR studies of borate glasses with PbCrO4 and Pb2CrO5 microcrystals. J Mater Sci 27:511

    Article  Google Scholar 

  212. Ray JC, Pramanik P, Ram S (2001) Formation of Cr3+ stabilized ZrO2 nanocrystals in a single cubic metastable phase by a novel chemical route with a sucrose-polyvinyl alcohol polymer matrix. Mater Lett 48:281

    Article  Google Scholar 

  213. Emeline AV, Serpone N (2001) Relaxation dynamics of processes in colloidal zirconia nanosols. Dependence on excitation energy and temperature. Chem Phys Lett 345:105

    Article  Google Scholar 

  214. Kroger FA (1964) Chemistry of imperfect crystals. North-Holland, Amesterdum

    Google Scholar 

  215. Bagnall DM, Chen TF, Shen MY, Zhu Z, Goto T, Yao T (1998) Room temperature excitonic stimulated emission from zinc oxide epilayers grown by plasma-assisted MBE. J Cryst Growth 184–185:605

    Article  Google Scholar 

  216. Nicoll FH (1966) Ultraviolet Zno laser pumped by an electron beam. Appl Phys Lett 9:13

    Article  Google Scholar 

  217. Hvam JM (1971) Temperature induced wavelength shift of electron beam pumped lasers from Cdse, Cds, and ZnO. Phys Rev B 4:4459

    Article  Google Scholar 

  218. Romero-Salazar C, Perez-Rodrıguez F (2003) Elliptic flux-line-cutting critical-state model. Appl Phys Lett 83:5226

    Article  Google Scholar 

  219. Robertson J (2000) Band offsets of wide-band-gap oxides and implications for future electronic devices. J Vac Sci Technol B 18:1785

    Article  Google Scholar 

  220. Zhu LQ, Fang Q, He G, Liu M, Zhang LD (2006) Effect of annealing on optical properties and band alignments of ZrO2/Si(100) by nitrogen-assisted reactive sputtering. Phys D: Appl Phys 39:5285

    Article  Google Scholar 

  221. David C, Mclntyre PC (2004) Film and interface layer properties of ultraviolet-ozone oxidized hafnia and zirconia gate dielectrics on silicon substrates. Appl Phys Lett 85:4699

    Article  Google Scholar 

  222. JBredas JL, Scott JC, Yakushi K, Street GB (1984) Polarons and bipolarons in polypyrrole: evolution of band structure and optical spectrum upon doping. Phys Rev B 30:1023

    Article  Google Scholar 

  223. Serpone N, Lawless D, Khairutdinov R (1995) Size effects on the photophysical properties of colloidal anatase TiO2 particles: size quantization versus direct transitions in this indirect semiconductor? J Phys Chem 99:16646

    Article  Google Scholar 

  224. Pankove JI (1971) Optical processes in semiconductors. Prentice Hall, New Jersey

    Google Scholar 

  225. Kwok CK, Aita CR (1989) Near band gap optical behavior of sputter deposited α and α + β-ZrO2 films. J Appl Phys 66:2756

    Article  Google Scholar 

  226. Kralik B, Chang EK, Louie SG (1998) Structural properties and quasiparticle band structure of zirconia. Phys Rev B 57:7027

    Article  Google Scholar 

  227. Marusaki M, Naito H, Matsuura Y, Matsukawa K (2006) Optical properties of poly (di-n-hexylsilane)-zirconia hybrid thin films: suppression of thermochromism and large thermo-optic coefficients. Appl Phys Lett 86:191907

    Article  Google Scholar 

  228. Bellini T, Clark NA, Muzny CD, Wu L, Garland CW, Schaefer DW, Oliver BJ (1992) Phase behavior of liquid crystal 8CB in a silica aerogel. Phys Rev Lett 69:788

    Article  Google Scholar 

  229. Böer KW (1990) Survey of semiconductor physics: electrons and other particles in bulk semiconductors. Van Nostrand Reinhold, New York, p 1034

    Book  Google Scholar 

  230. Kerker M (1969) The scattering of light and other electromagnetic radiation. Academic, New York

    Google Scholar 

  231. Bohren CF, Hoffman DR (1983) Adsorption and scattering of light by small particles. Wiley, New York

    Google Scholar 

  232. Krieberg U, Vollmer M (1995) Optical properties of metal clusters. Springer, Berlin

    Google Scholar 

  233. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409

    Article  Google Scholar 

  234. Cao G (2007) Nanostructures and nanomaterials: synthesis, properties and applications. Imperials College Press, London

    Google Scholar 

  235. Morell G, Katiyar RS, Torres D, Paje SE, Llopis J (1997) Raman scattering study of thermally reduced stabilized cubic zirconia. J Appl Phys 81:2830

    Article  Google Scholar 

  236. Mie G (1908) Beitréige zur optik triiber medien speziell kolloidaler metallosungen. Ann Phys 25:377

    Article  Google Scholar 

  237. Palpant B, Prevel B, Lerme J, Cottancin E, Pellarin M, Treilleux M, Perez A, Vialle JL, Broyer M (1998) Optical properties of gold clusters in the size range 2–4 nm. Phys Rev B 57:1963

    Article  Google Scholar 

  238. Uchikoshi T, Sakka Y, Ozawa K, Hiraga K (1998) Preparation of fine-grained monoclinic zirconia ceramics by colloid processing. J Mater Res 13:840

    Article  Google Scholar 

  239. De G, Gusso M, Tapfer L, Catalano M, Gonella F, Mattei G, Mazzoldi P, Battaglin GJ (1996) Annealing behavior of Cu, Ag and Ag-Cu nanoclusters doped silica by sol-gel processing. Appl Phys 80:6734

    Article  Google Scholar 

  240. Hao L, Lawrence J (2004) CO2 laser induced microstructure features in magnesia partially stablised zirconia bioceramic and effects thereof on the wettability characteristics. Mater Sci Eng A 364:171

    Article  Google Scholar 

  241. Hirvonen A, Nowaka R, Yamamoto Y, Sekino T, Niihara K (2006) Fabrication, structure, mechanical and thermal properties of zirconia-based ceramic nanocomposites. J Eur Ceram Soc 26:1497

    Article  Google Scholar 

  242. Chaim R (1992) Microstructure and bending strength in the ternary (Mg, Ca)-partially-stabilized zirconia. J Am Ceram Soc 75:694–699

    Article  Google Scholar 

  243. Ghosh P, Patra A (2006) Role of surface coating in ZrO2/Eu3+ nanocrystals. Langmuir 22:6321

    Article  Google Scholar 

  244. Mondal A, Ram S (2008) Enhanced phase stability and photoluminescence of Eu3+ modified t-ZrO2 nanoparticles. J Am Ceram Soc 91:329

    Article  Google Scholar 

  245. Savoini B, Santiuste JEM, Conzalez R (1997) Optical characterization of Pr3+doped yttria-stabilized zirconia single crystals. Phys Rev B 56:5856

    Article  Google Scholar 

  246. Martǐnez WC, De la Rosa-Cruz E, Diaz-Torres LA, Salas P, Montoya A, Avendano M, Rodriguez RA, Garcia OB (2002) Nanocrystalline tetragonal zirconium oxide stabilization at low temperatures by using rare earth ions: Sm3+ and Tb3+. Opt Mater 20:263

    Article  Google Scholar 

  247. Pereyra-Perea E, Estrada-Yanes MR, Garcia M (1998) Preliminary studies on luminescent terbium-doped thin films prepared by the sol-gel process. J Phys D Appl Phys 31:L7

    Article  Google Scholar 

  248. Reisfeld R, Eyal M (1987) Energy transfer between inorganic ions in amorphous solids. Acta Phys Polonica A71:799

    Google Scholar 

  249. Reisfeld R, Zelner M, Patra A (2000) Fluorescence study of zirconia films doped by Eu3+, Tb3+ and Sm3+ and their comparison with silica films. J Alloy Compd 300–301:147

    Article  Google Scholar 

  250. Patra A, Friend CS, Kapoor R, Prasad PN (2003) Effect of crystal nature on up conversion luminescence in Er3+: ZrO2 nano crystals. Appl Phys Lett 83:284

    Article  Google Scholar 

  251. Garcia-Hipolito M, Falcony C, Aguilar-Frutis MA, Azorin-Nieto J (2001) Synthesis and characterization of luminescent ZrO2:Mn, Cl powders. Appl Phys Lett 79:4369

    Article  Google Scholar 

  252. Gschneid KA Jr, Eyring LR (1979) Handbook on the physics and chemistry on rare-earths. North-Holland, Amsterdam

    Google Scholar 

  253. Lopez EF, Escribano VS, Panizza M, Carnasciali MM, Busca G (2001) Vibrational and electronic spectroscopic properties of zirconia powders. J Mater Chem 11:1891

    Article  Google Scholar 

  254. Wang SF, Gu F, Kai M, Yang ZS, Zhou GJ, Zhang HP, Zhou YY, Wang SM (2006) Structure evolution and photoluminescence properties of ZrO2:Eu3+ nanocrystals. Opt Mater 28:1222

    Article  Google Scholar 

  255. Rignanese GM, Detraux F, Gonze X (2001) First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys Rev B 64:134301–134307

    Article  Google Scholar 

  256. Merle T, Guinebretiere R, Mirgorodsky A, Quintard P (2002) Polarized Raman spectra of tetragonal pure ZrO2 measured on epitaxial films. Phys Rev B 65:144302

    Article  Google Scholar 

  257. Macfarlane RM, Shelby RM (1987) Coherent transient and hole burning spectroscopy of rare earth ions in solids. In: Kaplyanskii AA, Macfarlane RM (eds) Spectroscopy of crystals containing rare-earth ions. North-Holland, Amsterdam, p 51

    Chapter  Google Scholar 

  258. You H, Nogami M (2004) Optical properties and local structure of Eu3+ ions in sol-gel TiO2-SiO2 glasses. J Phys Chem B108:12003

    Article  Google Scholar 

  259. Nogami M, Umehara N, Hayakawa T (1998) Effect of hydroxyl bonds on persistent spectral hole burning in Eu3+-doped BaO-P2O5 glasses. Phys Rev B 58:6166

    Article  Google Scholar 

  260. Chen HR, Shi JL, Yong Y, Li YS, Yan DS, Shi CS (2002) Violet-blue photoluminescent properties of mesoporous zirconia modified with phosphoric acid. Appl Phys Lett 81:2761

    Article  Google Scholar 

  261. McKeever SWS (1985) Thermoluminance of solids. Cambridge University Press, Cambridge

    Book  Google Scholar 

  262. Miyoshi T, Makidera Y, Kawamura T, Kashima S, Matsuo N, Kaneda T (2002) Thermoluminescence of light and X-ray irradiated semiconductor-doped glasses. J Appl Phys 41:5262

    Article  Google Scholar 

  263. Harrison DE, Melamed NT, Subbarao EC (1963) A new family of self-activated phosphors. J Electrochem Soc 110:23

    Article  Google Scholar 

  264. Bettinali C, Ferraresso G, Manconi JW (1969) Thermoluminescence of ZrO2. J Chem Phys 50:3957

    Article  Google Scholar 

  265. Iacconi P, Lapraz D, Caruba R (1978) Traps and emission centres in thermoluminescent ZrO2. Phys Status Solidi (a) 50:275

    Article  Google Scholar 

  266. Curie D (1957) Modèles pour les divers types de pièges dans le sulfure de zinc phosphorescent. libération thermique et optique des électrons piégés. J Phys Radium 18:214

    Article  Google Scholar 

  267. Arsenev PA, Bagdasarov KS, Niklas A, Ryazantsev AD (1980) X-ray and thermostimulated luminescence of 0.9 ZrO2-0.1 Y2O3 single crystals. Phys Status Solidi (a) 62:395

    Article  Google Scholar 

  268. Hsieh WC, Su CS (1994) Thermoluminescence in ZrO2 with Impurity of ZnO induced by UV radiation. Appl Phys A 58:459

    Article  Google Scholar 

  269. Salas P, De la Rosa-Cruz E, Diaz-Torres LA, Castano VM, Melendrez R, Barboza-Flores RM (2003) Monoclinic ZrO2 as a broad spectral response thermoluminescence UV dosemeter. Radiat Meas 37:187

    Article  Google Scholar 

  270. Hsieh WC, Su CS (1994) UV induced thermoluminescence in ZrO2 doped by Er2O3. J Phys D Appl Phys 27:1763

    Article  Google Scholar 

  271. Sanchéz GV, Anaya DM, Gutierrez-Wing C, Hernandez RP, Martinez PRG, Chavez CA (2007) Ag nanoparticle effects on the thermoluminescent properties of monoclinic ZrO2 exposed to ultraviolet and gamma radiation. Nanotechnology 18:265703

    Article  Google Scholar 

  272. Azorín J, Rivera T, Martínez E, García M (1998) Thermoluminescence of Eu-doped ZrO2 thin films exposed to ultraviolet and visible light. Radiat Meas 29:315

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ram, S., Singh, G.P. (2017). Advanced ZrO2-Based Ceramic Nanocomposites for Optical and Other Engineering Applications. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_15

Download citation

Publish with us

Policies and ethics