Skip to main content

Functionally Graded Composites: Processing and Applications

  • Chapter
  • First Online:
Composite Materials

Abstract

The new generation demands advanced materials that fulfills today’s commercial applications. Functionally graded materials (FGMs) are the modern, emerging materials that meet the current needs of our society. This chapter presents the classification of FGMs based on various domains. It also highlights the present status of various processing methods adopted to fabricate these FGMs and their characterizations. The possible areas of applications of FGMs are also briefed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bever MB, Duwez PE (1972) Gradients in composite materials. Mater Sci Eng 10(1):1–8

    Article  Google Scholar 

  2. Shen M, Bever MB (1972) Gradients in polymeric materials. J Mater Sci 7(7):741–746

    Article  Google Scholar 

  3. Lee WY, Bae YW, More KL (1995) Synthesis of functionally graded metal-ceramic microstructures by chemical vapor deposition. J Mater Res 10(12):3000–3002

    Article  Google Scholar 

  4. Ghosh A (1997) Functionally graded materials: manufacture, properties, and applications. American Ceramic Society, Westerville

    Google Scholar 

  5. Wen B, Wu J, Yu J (2004) A flat polymeric gradient material: preparation, structure and property. Polym 45(10):3359–3365

    Article  Google Scholar 

  6. Krumova M, Klingshirn C, Haupert F, Friedrich K (2001) Microhardness studies on functionally graded polymer composites. Compos Sci Technol 61(4):557–563

    Article  Google Scholar 

  7. Wang Q, Wang C (2012) Preparation and evaluation of a biomimetic scaffold with porosity gradients in vitro. Anis Da Academia Brasileira de Ciencias 84(1):9–16

    Article  Google Scholar 

  8. Birman V, Keli T, Hosder S (2012) Functionally graded materials in engineering. In: Structural interfaces and attachments in biology. Springer, New York, pp 19–41

    Google Scholar 

  9. Abdul Khalil HPS, Bhat IUH, Jawaid M, Zaidon A, Hermawan D, Hadi YS (2012) Bamboo fibre reinforced biocomposites: a review. Mater Des 42:353–368

    Article  Google Scholar 

  10. Neubrand A (2006) Functionally graded materials In: Editors-In-Chief: Robert KHJB, Merton WC, Bernard CF, Edward I Encyclopedia of materials: science and technology. Elsevier, Oxford, pp 3407–3413

    Google Scholar 

  11. Kayikci R, Sava S (2014) Fabrication and properties of functionally graded Al/AlB2 composites. J Compos Mater 49(16):2029–2037

    Article  Google Scholar 

  12. Mahamood RM, Akinlabi ET, Shukla M, Pityana S (2012) Functionally graded material: an overview. In: Proceedings of the world congress on engineering, VIII, London

    Google Scholar 

  13. Jamaludin SSS, Mustapha F, Nuruzzaman DM, Basri SN (2013) A review on the fabrication techniques of functionally graded ceramic-metallic materials in advanced composites. Acad J 8(21):828–840

    Google Scholar 

  14. Miao X, Sun D (2010) Graded/gradient porous biomaterials. Materials 3:26–47

    Article  Google Scholar 

  15. Eso O, Fang Z, Griffo A (2005) Liquid phase sintering of functionally graded WC–Co composites. Int J Refract Met H 23(4–6):233–241

    Article  Google Scholar 

  16. Tang X, Zhang H, Du D, Qu D, Hu C, Xie R, Feng Y (2014) Fabrication of W–Cu functionally graded material by spark plasma sintering method. Int J Refract Met H 42:193–199

    Article  Google Scholar 

  17. Leite LJ, Salmoria GV, Paggi RA, Ahrens CH, Pouzada AS (2012) Microstructural characterization and mechanical properties of functionally graded PA12/HDPE parts by selective laser sintering. Int J Adv Manuf Technol 59(5–8):583–591

    Article  Google Scholar 

  18. Neemat-Alla MM, Ata MH, Bayoumi MR, Khair-Eldeen W (2011) Powder metallurgical fabrication and microstructural investigations of Aluminium/Steel functionally graded material. Mater Sci Appl 2:1708–1718

    Google Scholar 

  19. Nazari A, Riahi S (2010) Effect of layer angle on tensile behavior of oblique layer functionally graded steels. Turk J Eng Environ Sci 34:17–24

    Google Scholar 

  20. Miao X, Sun D (2009) Graded/gradient porous biomaterials. Materials 3:26–44

    Article  Google Scholar 

  21. Lee P, ASCE SM, Yin H, ASCE M (2014) Size effect on functionally graded material fabrication by sedimentation. J Nanomech Micromech 5:2153–5434

    Google Scholar 

  22. Zarabiana M, Yara AY, Vafaeenezhada S, Sania MAF, Simchia A (2013) Electrophoretic deposition of functionally-graded NiO–YSZ composite films. J Eur Ceram Soc 33(10):1815–1823

    Article  Google Scholar 

  23. Hamidreza FH, Mohandesib JA, Çimenoğluc H (2015) Micro-scratch and corrosion behavior of functionally graded HA-TiO2 nanostructured composite coatings fabricated by electrophoretic deposition. J Mech Behav Biomed Mater 46:31–40

    Article  Google Scholar 

  24. Katayama T, Sukenaga S, Saito N, Kagata H, Nakashima K (2011) Fabrication of Al2O3-W functionally graded materials by slip casting method. IOP Conf Ser Mater Sci Eng 18. Symposium 14:1-4

    Google Scholar 

  25. Gerdes T, Park HS, Pontiller P, Saberi A, Willert-Porada M (2014) Functionally graded refractory ceramics with dense surface coating. In: Blucher materials science proceedings, MM& FGM, vol 1. São Paulo: Blucher

    Google Scholar 

  26. Watanabe Y, Inaguma Y, Sato H, Fujiwara EM (2009) A novel fabrication method for functionally graded materials under centrifugal force: the centrifugal mixed-powder method. Materials 2(4):2510–2525

    Article  Google Scholar 

  27. Mazare L, Miranda G, Soares DF, Silva FS (2010) Influence of solidification rates on a directional solidification process for the production of functionally graded materials. Int J of Mater Prod Technol 39(1/2):44–58

    Article  Google Scholar 

  28. Yi S, Huang Z, Huang J, Fang M, Liu Y, Zhang S (2014) Novel calcium hexaluminate/spinel-alumina composites with graded microstructures and mechanical properties. Sci Rep 4:4333

    Google Scholar 

  29. Watanbe Y, Sato H (2011) In book: Nanocomposites with unique properties and applications in medicine and industry. Edited by John Cuppoletti, Source: InTech. Rigeka, Croatia

    Google Scholar 

  30. Watanabe Y, Eri MF, Sato H (2010) Fabrication of functionally graded materials by centrifugal slurry-pouring method and centrifugal mixed-powder method. J Jpn Soc Powder Metall 57(5):321–326

    Article  Google Scholar 

  31. Jayachandran M, Tsukamoto H, Sato H, Watanbe Y (2013) Formation behavior of continuous graded composition in Ti-ZrO2 functionally graded materials fabricated by mixed-powder pouring method. J Nanomater, Special issue, Article ID 504631

    Google Scholar 

  32. Drenchev L, Sobczak J, Malinov S, Sha W (2003) Numerical simulation of macrostructure formation in centrifugal casting of particle reinforced metal matrix composites Part 2: simulations and practical applications. Modeling Simul Mater Sci Eng 11:651–674

    Article  Google Scholar 

  33. Tsukamoto H (2010) Design against fracture of functionally graded thermal barrier coatings using transformation toughening. Mater Sci Eng A 527(13–14):3217–3226

    Article  Google Scholar 

  34. Fu Y (2006) Review on current state and development of thermally sprayed functional gradient coatings. Cailiao Baohu 39(6):41–45

    Google Scholar 

  35. Schulz U, Peters M, Bach FW, Tegeder G (2003) Graded coatings for thermal, wear and corrosion barriers. Mater Sci Eng A 362(1–2):61–80

    Article  Google Scholar 

  36. Nagarajan N, Nicholson PS (2004) Nickel-alumina functionally graded materials by electrophoretic deposition. J Am Ceram Soc 87(11):2053–2057

    Article  Google Scholar 

  37. Acikbas NC, Suvaci E, Mandal H (2006) Fabrication of functionally graded SiAlON ceramics by tape casting. J Am Ceram Soc 89(10):3255–3257

    Article  Google Scholar 

  38. Prinz D (1999) Functionally graded materials. Trans Tech Publications, Switzerland

    Google Scholar 

  39. Padhi D, Park S, Balasubramanian G, Rocha-Alvarez JC, Xia L, Witty DR, M’Saad H (2006) Method to deposit functionally graded dielectric films via chemical vapor deposition using viscous precursors. US Patent 7,802,538

    Google Scholar 

  40. Okamura H (1991) State of the art of material design projects for severe service applications. Mater Sci Eng A 143(1–2):3–9

    Article  Google Scholar 

  41. Goswami B, Ray AK, Sahay SK (2004) Thermal barrier coating system for gas turbine application: a review. High Temp Mater Processes 23(2):73–92

    Article  Google Scholar 

  42. Buyukkaya E (2008) Thermal analysis of functionally graded coating AlSi alloy and steel pistons. Surf Coat Technol 202(16):3856–3865

    Article  Google Scholar 

  43. Groves JF, Wadley HNG (1997) Functionally graded materials synthesis via low vacuum directed vapor deposition. Compos Part B 28(1–2):57–69

    Article  Google Scholar 

  44. Araki M, Sasaki M, Kim S, Suzuki S, Nakamura K, Akiba M (1994) Thermal response experiments of SiC/C and TiC/C functionally gradient materials as plasma-facing materials for fusion application. J Nucl Mater 212(215):1329–1334

    Article  Google Scholar 

  45. Gao JW, Wang CY (2000) Modeling the solidification of functionally graded materials by centrifugal casting. Mater Sci Eng A 292(2):207–215

    Article  Google Scholar 

  46. Dutta D, Prinz FB, Rosen D, Lee W (2001) Layered manufacturing: current status and future trends. J Comput Inf Sci Eng 1(1):60–71

    Article  Google Scholar 

  47. Gallant FM, Bruck HA, Kota AK (2004) Fabrication of particle-reinforced polymers with continuous gradient architectures using twin screw extrusion process. J Compos Mater 38:1873–1893

    Article  Google Scholar 

  48. Kieback B, Neubrand A, Riedel H (2003) Processing techniques for functionally graded materials. Mater Sci Eng A 362(1–2):81–106

    Article  Google Scholar 

  49. Pompe W, Worch H, Epple M, Friess W, Gelinsky M, Greil P, Hemple U, Scharnweber D, Schulte K (2003) Functionally graded materials for biomedical applications. Mater Sci Eng A 362(1–2):40–60

    Article  Google Scholar 

  50. Kirihara S (2014) Three dimensional printing of metals and ceramics graded dendrites for energy and material flows modulation. In: Blucher materials science proceedings 1(1), MM & FGM

    Google Scholar 

  51. Han SW, Ji WJ, Moon YH (2014) Fabrication of gear having functionally graded properties by Direct Laser Melting Process. Adv Mech Eng 6:609–735

    Google Scholar 

  52. Bourban P, EBuhler M, Manson JAE, Mathieu LMM, Pioletti D, Stadelmann V (2008) Cellular gradient polymer composites. US Patent 2,008,007,332

    Google Scholar 

  53. Li J, Liu T, Xia S, Pan Y, Zheng Z, Ding X, Peng Y (2011) A versatile approach to achieve quintuple-shape memory effect by semi-interpenetrating polymer networks containing broadened glass transition and crystalline segments. J Mater Chem 21:12213–12217

    Article  Google Scholar 

  54. Senda K, Matsuda T, Kawanishi T, Tanaka K, Usui H (2013) Preparation of a functionally graded fluoropolymer Thin film and its application to antireflective coating. Jpn J Appl Phys 52(5S1)

    Google Scholar 

  55. Mukawa Y, Kondo A, Koike Y (2012) Optimization of the refractive-index distribution of graded-index polymer optical fiber by the Diffusion-Assisted Fabrication Process. Appl Phys Express 5(4) 042501-1/3

    Google Scholar 

  56. Arrue J, Jiménez F, Aldabaldetreku G, Durana G, Zubia J, Lomer M, Mateo J (2008) Analysis of the use of tapered graded-index polymer optical fibers for refractive-index sensors. Opt Express 16(21):16616–16631

    Google Scholar 

  57. Koerdta M, Kibbenb S, Hesselbachc J, Braunerc C, Herrmannd AS, Vollertsenb F, Krolla L (2014) Fabrication and characterization of bragg gratings in a graded-index perfluorinated polymer optical fiber. Procedia Technol 15:138–146

    Article  Google Scholar 

  58. Kusanagi H, Masuda S, Nose T, Sato S (1999) Graded index type liquid crystal microlens using small amount of polymer. Mater Sci Forum 308–311:591–596

    Article  Google Scholar 

  59. Li HZL, Scheiding S, Gebhardt A, Risse S, Eberhardt R, Yi AY (2013) Fabrication of three dimensional functional microstructures on curved substrates using three dimensional microlens projection. J Micro Nano Manuf 1(1)

    Google Scholar 

  60. Mu ZG, Wang YS (2007) Study on impact property of EP/PU graded interpenetrating polymer networks (IPNs). Reg uxingShuzhi 22(4):18–24

    Google Scholar 

  61. Kikutani T (1999) High-speed melt spinning process and control of synthetic fiber structure. Sen-i Gakkaishi 55(11):391–395

    Article  Google Scholar 

  62. Liu XQ, Wang YS, Zhu JH (2004) Epoxy resin/polyurethane functionally graded material prepared by microwave irradiation. J Appl Polym Sci 94:994–999

    Article  Google Scholar 

  63. Xie XM, Matsuoka M, Takemura K (1992) Formation of gradient phase structure during annealing of a polymer blend. Polym 33(9):1996–1998

    Article  Google Scholar 

  64. Parmeswaran V, Shukla A (2000) Processing and characterization of a model functionally gradient material. J Mater Sci 35:21–29

    Article  Google Scholar 

  65. Shukla A, Jain N (2004) Dynamic damage growth in particle reinforced graded materials. Int J Impact Eng 30:777–803

    Article  Google Scholar 

  66. Ivosevic M, Knight R, Khalidindi R, Palmese GR, Sutter JK (2006) Solid particle erosion resistance of thermally sprayed functionally graded coatings for polymer matrix composites. Surf Coat Technol 200(16):5145–5151

    Article  Google Scholar 

  67. Fukui Y, Kinoshita H, Nakanishi K (1992) A simulative experiment for characterizing the strength of functionally gradient material. JSME Int J Ser I 35(1):597–607

    Google Scholar 

  68. Akiyama S (1999) Effect of gradient of the crystalline phase on semicrystalline polymers. Polym Prepr Jpn 48(1):94

    Google Scholar 

  69. Butcher RJ, Rousseau CE, Tippur HV (1999) A functionally graded particulate composite: preparation, measurements and failure analysis. Acta Mater 47(1):259–268

    Article  Google Scholar 

  70. Ogumi Z, Abe T, Nakamura S, Inaba M (1999) Functionally gradient polymer electrolyte prepared by plasma. Solid State Ion 121(1–4):289–293

    Article  Google Scholar 

  71. Stellbrink KKU, Hausser G, Steegmuller R (1999) One component composites as functionally gradient materials. J Thermoplast Compos Mater 12(3):188–200

    Article  Google Scholar 

  72. Tilbrook MT, Moon RJ, Hoffman M (2005) Finite element simulations of crack propagation in functionally graded materials under flexural loading. Eng Fract Mech 72:2444–2467

    Article  Google Scholar 

  73. Uhlig C, Bauer J, Bauer M (1994) Rubber toughening of polycyanurates. Polym Mater Sci Eng 71:748

    Google Scholar 

  74. Elghandour EI (1994) Effect of stacking sequence of laminated composites with different cure on the fracture mechanics at elevated temperature. In: 3rd international symposium on structural and functional gradient materials, Laussane

    Google Scholar 

  75. Lee NJ, Jang J (2000) The effect of fiber content gradient on the mechanical properties of glass-fiber-mat/polypropylene composites. Compos Sci Technol 60(2):209–217

    Article  Google Scholar 

  76. Ikeda Y (2003) Graded styrene-butadiene rubber vulcanizates. J Appl Polym Sci 87(1):61–67

    Article  Google Scholar 

  77. Bruck HA, Moore CL, Valentine TM (2003) Bending actuation in polyurethanes with a symmetrically graded distribution of one-way shape memory alloy wires. Exp Mech 44(1):62–70

    Article  Google Scholar 

  78. Lee NJ, Jang J, Park M, Choe CR (1997) Characterization of functionally gradient epoxy/carbon fiber composite prepared under centrifugal force. J Mater Sci 32(8):2013–2020

    Article  Google Scholar 

  79. Klingshirn C, Koizumi M, Haupert F, Giertzsch H, Friedrich K (2000) Structure and wear of centrifuged epoxy-resin/carbon fiber functionally graded materials. J Mater Sci Lett 19(3):263–266

    Article  Google Scholar 

  80. Tsotra P, Friedrich K (2004) Short carbon fiber reinforced epoxy resin/polyaniline blends: their electrical and mechanical properties. Compos Sci Technol 64:2385–2391

    Article  Google Scholar 

  81. Agari Y, Shimada M, Ueda A, Nagai S (1996) Preparation, characterization and properties of gradient polymer blends: discussion of poly (vinyl chloride)/poly(methyl methacrylate) blend films containing a wide compositional gradient phase. Macro Mol Chem Phys 197(6):2017–2033

    Article  Google Scholar 

  82. Koide S, Yazawa K, Asakawa N, Inoue Y (2007) Fabrication of functionally graded bulk materials of organic polymer blends by uniaxial thermal gradient. J Mater Chem 17:582–590

    Article  Google Scholar 

  83. Sato S, Nose T, Masuda S, Yanase S (1999) Functionally graded optical polymer materials prepared using UV curable liquid-crystals with an electric field. Mater Sci Forum 308:567–572

    Article  Google Scholar 

  84. Lambros J, Santare MH, Li H, Sapna GH (1999) A novel technique for the fabrication of laboratory scale model functionally graded materials. Exp Mech 39(3):184–190

    Article  Google Scholar 

  85. Abanto-Bueno J, Lambros J (2002) Investigation of crack growth in functionally graded materials using digital image correlation. Eng Fract Mech 69:1695–1711

    Article  Google Scholar 

  86. Kalyon DM, Erisken C, Ozkan S, Ergun-Butros A, Yu X, Wang H, Valdevit H, Ritter A (2014) Functionally-graded polymeric graft substitutes and scaffolds for tissue engineering can be fabricated via various extrusion methods. Tissue Sci Eng 5(1)

    Google Scholar 

  87. Laia MS, Jorge DR, Neri O (2014) Water-based robotic fabrication: large-scale additive manufacturing of functionally graded hydrogel composites via multichamber extrusion. 3D Print Addict Manuf 1(3):141–151

    Article  Google Scholar 

  88. Ergun A, Chung R, Ward D, Valdevit A, Ritter A (2012) Unitary bioresorbable cage/core bone graft substitutes for spinal arthrodesis coextruded from polycaprolactone biocomposites. Ann Biomed Eng 40:1073–1087

    Article  Google Scholar 

  89. Ergun A, Yu X, Valdevit A, Ritter A, Kalyon DM (2011) Vitro-analysis and mechanical properties of twin screw extruded single-layered and coextruded multilayered poly (caprolactone) scaffolds seeded with human fetal osteoblasts for bone tissue engineering. J Biomed Mater Res A 99:354–356

    Article  Google Scholar 

  90. Ergun A, Yu X, Valdevit A, Ritter A (2011) Compressive fatigue behavior of osteoblast seeded tissue constructs of poly(caprolactone) multilayered scaffolds for bone graft substitute applications. Ortho Res Soc Trans 36:1850

    Google Scholar 

  91. Ergun A, Yu X, Valdevit A, Ritter A, Kalyon DM (2012) Radially and axially-graded multi-zonal scaffolds targeting critical-sized bone defects from polycaprolactone/hydroxyapatite/tricalcium phosphate. Tissue Eng Part A 18:2426–2436

    Article  Google Scholar 

  92. Ozkan S, Kalyon DM, Yu X, McKelvey C, Lowinger M (2009) Multifunctional protein-encapsulated polycaprolactone scaffolds: fabrication and in vitro assessment for tissue engineering. Biomaterials 30:4336–4347

    Article  Google Scholar 

  93. Ozkan S, Kalyon DM, Yu X (2010) Functionally graded beta-TCP/PCL nanocomposite scaffolds in vitro evaluation with human fetal osteoblast cells. J Biomed Mater Res A 92:1007–1018

    Google Scholar 

  94. Erisken C, Kalyon DM, Wang HA (2008) Hybrid twin screw extrusion/electrospinning method to process nanoparticle-incorporated electrospun nanofibres. Nanotechnology 19:165302

    Article  Google Scholar 

  95. Erisken C, Kalyon DM, Wang H (2008) Functionally and continuously graded electrospun polycaprolactone and ß-tricalcium phosphate nanocomposites for interface tissue engineering applications. Biomaterials 29:4065–4073

    Article  Google Scholar 

  96. Erisken C, Kalyon DM, Wang H (2010) Viscoelastic and biomechanical properties of osteochondral tissue constructs generated from graded polycaprolactone and beta-tricalcium phosphate composites. J Biomeh Eng 132:091013

    Article  Google Scholar 

  97. Erisken C, Kalyon DM, Ornek-Ballanco C, Wang H, Xu J (2011) Osteochondral tissue formation through adipose-derived stem cell differentiation using biomimetic tissue scaffolds with graded stimulator concentrations. Tissue Eng A 17:1239–1252

    Article  Google Scholar 

  98. Leu MC, Deuser BK, Tang L, Landers RG, Hilmas GE, Watts JL (2012) Freeze-form extrusion fabrication of functionally graded materials. CIRP Ann Manuf Technol 61:223–226

    Article  Google Scholar 

  99. Pojman JA, Chekanow YA, Case C, McCardle T (2000) Functionally graded polymeric materials prepared via frontal polymerization. J Appl Polym Sci 78:2398

    Article  Google Scholar 

  100. Perry JW, Mansour K, Lee IYS, Wu XL, Bedworth PV, Chen CT, Ng D, Marder SR, Miles P, Wada T, Tian M, Sasabe H (1996) Organic optical limiter with a strong nonlinear absorptive response. Science 273(5281):1533–1536

    Article  Google Scholar 

  101. Furukawa M, Okazaki T, Shiiba T (1997) Aggregation structure and mechanical properties of functionally graded polyurethane elastomers. J Nat Rubber Res 41(20):2355–2364

    Google Scholar 

  102. Mathew AP, Varghese H, Thomas S (2005) Electrical properties of nanostructured interpenetrating polymer networks based on natural rubber. J Appl Polym Sci 98(5):2017–2026

    Article  Google Scholar 

  103. Danielsson M, Grenestedt JL (1998) Gradient foam core materials for sandwich structures: preparation and characterization. Compos Part A 29(8):981–988

    Article  Google Scholar 

  104. Mcdonald PM, Zhu XX, Uemura Y (2003) Diffusion in transient polymer networks: solvent, solute and polymer. Polym Prep 44(1):289

    Google Scholar 

  105. Wang HR, Cima MJ, Sachs EM (2004) Alumina-doped silica gradient-index (GRIN) lenses by slurry based three-dimensional printing (S-3DP). J Non-Cryst Solids 349:360–367

    Article  Google Scholar 

  106. Kumar R, Chandrappa CN (2014) Synthesis and characterization of Al-SiC functionally graded material composites using powder metallurgy techniques. Int J Innov Res Sci Eng Technol 3(8):2319–8753

    Google Scholar 

  107. Gandra J, Vigarinho P, Pereira D, Miranda RM, Velhinho A, Vilakha P (2013) Wear characterization of functionally graded Al–SiC composite coatings produced by Friction Surfacing. Mat Des 52:373–383, Elsevier, Oxford

    Article  Google Scholar 

  108. Tian H, Schryvers D, Mohanchandra KP, Carman GP, Humbeeck JV (2009) Fabrication and characterization of functionally graded Ni–Ti multilayer thin films. Funct Mater Lett 2(2):61–66

    Article  Google Scholar 

  109. Tsukamoto H (2015) Nano- and micro-indentation characterization of ZrO2/Ti functionally graded materials fabricated by Spark Plasma Sintering. Mat Sci Eng A 640:338–349, Elsevier, Oxford

    Article  Google Scholar 

  110. Yuan H, Li J, Xiong Y, Luo G, Shen Q, Zhang L (2012) Preparation and characterization of PMMA graded microporous foams via one-step supercritical carbon dioxide foaming. J Phys Conf Ser 419. ISSN 1742–6596

    Google Scholar 

  111. Bafekrapour E, Simon GP, Habsuda J, Naebe M, Yang C, Bronwyn F (2012) Fabrication and characterization of functionally graded synthetic graphite/phenolic nanocomposites. Mater Sci Eng A 545:123–131, Elsevier, oxford

    Article  Google Scholar 

  112. Ahankari SS, Kar KK (2010) Processing and mechanical behavior of carbon black graded rubber compounds. J Appl Polym Sci 115(6):3146–3154

    Article  Google Scholar 

  113. Ahankari SS, Kar KK (2010) Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber – carbon black nanocomposites. J Appl Poym Sci 50(5):871–877

    Google Scholar 

  114. Ahankari SS, Kar KK (2008) Processing of styrene butadiene rubber-carbon black nanocomposites with gradation of crosslink density: static and dynamic mechanical characterization. Mater Sci Engg A 491(1–2):454–460

    Article  Google Scholar 

  115. Ahankari SS, Kar KK (2008) Processing and characterization of functionally graded materials through mechanical properties and glass transition temperature. Mater Lett 62(19):3398–3400

    Article  Google Scholar 

  116. Al-Sanabani FA, Madfa AA, Al-Qudaimi NH (2014) Alumina ceramic for dental applications: a review article. Amer J Mater Res 1(1):26–34

    Google Scholar 

  117. Henriques B (2013) Inhomogeneous materials perform better: functionally graded materials for biomedical application. J Powder Met Min 2(3):1–2

    Google Scholar 

  118. Oshkour AA, Osman NAA, Yau YH, Tarlochan F, Abas WABW (2013) Design of new generation femoral prostheses using functionally graded materials: a finite element analysis. Proc Inst Mech Eng J Eng Med 227(1):3–17

    Article  Google Scholar 

  119. Abedi G, Sotoudeh A, Soleymani M et al (2011) A collagen-poly(vinyl alcohol) nanofiber scaffold for cartilage repair. J Biomat Sc Polyme 22(18):2445–2455

    Article  Google Scholar 

  120. Nugroho AW, Leadbeater G, Davies IJ (2010) Processing of a porous titanium alloy from elemental powders using a solid state isothermal foaming technique. J Mater Sci Mater Med 21:3103–3107

    Article  Google Scholar 

  121. Kim JI, Kim WJ, Choi DJ, Park JY, Ryu WS (2005) Design of a C/SiC functionally graded coating for the oxidation protection of c/c composites. Carbon 43(8):1749–1757

    Article  Google Scholar 

  122. Forest ML, Parker CA, Dillon F, Siegmund TH, Copra RJ, Fatz AE, Braunisch PF, Cordell T (2006) Manufacture of functionally graded carbon carbon composites US Patent 1,085,293,3

    Google Scholar 

  123. Udupa G, Rao SS, Gangadharan KV (2014) A review of carbon nanotube reinforced aluminium composite and functionally graded composites as a future material for aerospace application. Int J Mod Eng Res 4(7):13–22

    Google Scholar 

  124. Kumar S, Reddy KVVSM, Kumar A, Rohini Devi G (2013) Development and characterization of polymer–ceramic continuous fiber reinforced functionally graded composites for aerospace application. Aerosp Sci Technol 26(1):185–191

    Article  Google Scholar 

  125. Clarke DR. Materials selection guidelines for low thermal conductivity thermal barrier coatings. Materials Department, College of Engineering, University of California, Santa Barbara. 93106–5050

    Google Scholar 

  126. Gupta N, Prasad VVB, Madhu V, Basu B (2012) Ballistic studies on TiB2-Ti functionally graded armor ceramics. Def Sci J 62(6):382–389

    Article  Google Scholar 

  127. Aydin M, Apalak MK, Gunes R, Reddy JN (2014) An experimental study on ballistics performance: functionally graded sandwich plate impacted by a 9 mm parabellum projectile. Blucher Mat Sci Proc 1(1):1–4

    Google Scholar 

  128. Bohidar SK, Sharma R, Mishra PR (2014) Functionally graded materials: a critical review. Int J Sci Footpr 2(4):18–29

    Google Scholar 

  129. Subramanyam G, Cole MW, Sun NX, Kalkur TS, Sbrockey NM, Tompa GS, Guo X, Chen C, Alpay SP, Rossetti GA Jr, Dayal K, Chen L, Schlom DG (2013) Challenges and opportunities for multi-functional oxide thin films for voltage tunable radio frequency/microwave components. Jpn J Appl Phys 114(191301):1–35

    Google Scholar 

  130. Woolley RJ, Skinner SJ (2014) Functionally graded composite La2NiO4 + δ and La4Ni3O10-δ solid oxide fuel cell cathodes. Solid State Ion 255:1–5

    Article  Google Scholar 

  131. Dharmin P, Khushbu P, Chetan J (2012) A review on stress analysis of an infinite plate with cut-outs. Int J Sci Res Pub 2(11)

    Google Scholar 

  132. Yin HM, Yang DJ, Kelly G, Garant J (2013) Design and performance of a novel building integrated PV/thermal system for energy efficiency of buildings. Sol Energy 87:184–195

    Article  Google Scholar 

  133. Miteva AM (2014) An overview of functionally graded materials. Int Virt J Sci Tech Innov Indus 7(3):13–16

    Google Scholar 

  134. Sun H, Woodward J, Yin J, Moldawer A, Pecora EF, Nikiforov AY, Negro LD, Paiella R, Ludwig K Jr, Smith DJ, Moustakas TD (2013) Development of AlGaN-based graded-index-separate-confinement heterostructure deep UV emitters by molecular beam epitaxy. J Vac Sci Technol 31(3) 03C117

    Google Scholar 

  135. Bulatova R, Bahl C, Andersen K, Kuhn LT, Pryds N (2015) Functionally graded ceramics fabricated with side-by-side tape casting for use in magnetic refrigeration. Int J Appl Ceram Technol 12:891–898

    Article  Google Scholar 

  136. Lee HL, Chang WJ, Chen WL, Yang YC (2012) Inverse heat transfer analysis of a functionally graded fin to estimate time-dependent base heat flux and temperature distributions. Energy Convers Manage 57:1–7

    Article  Google Scholar 

  137. Das M, Guven I, Madenci E (2006) Coupled BEM and FEM analysis of functionally graded underfill layers in electronic packages. Proc 55th IEEE Electron Compon Technol Conf 995–1005

    Google Scholar 

  138. Bahria A, Salehia M, Akhlaghia M (2014) Using a pseudo-functionally graded interlayer in order to improve the static and dynamic behavior of wind turbine blade T-bolt root joints. Compos Interface 21(8):749–770

    Article  Google Scholar 

  139. Cho JR, Park HJ (2002) High strength FGM cutting tools: finite element analysis on thermoelastic characteristics. J Mater Process Technol 130–131:351–356

    Article  Google Scholar 

  140. Reddy BS, Kumar JS, Reddy CE, Kumar Reddy KV (2013) Buckling analysis of functionally graded material plates using higher order shear deformation theory. J Compos Mater vol. 2013 1–12. Article ID 808764

    Google Scholar 

  141. Fang ZZ, Fan P, Guo J (2011) Functionally graded cemented tungsten carbide with engineered hard surface and the method for making the same. EP2350331A2

    Google Scholar 

  142. Liu CS, He BH (2014) Research on functional gradient mold coating optimized preparation by electroplating and arc spray. J Chem Pharm Res 6(6):2136–2139

    Google Scholar 

  143. Tokita M (2014) Recent progress of spark plasma sintering (sps) method and industrial use of functionally graded materials (FGMs). Blucher Mater Sci Proc 1(1)

    Google Scholar 

  144. Petrovic JJ, Castro RG, Vaidya RU, Peters MI, Mendoza D, Hoover RC, Gallegos DE. (2008). Molybdenum Disilicide Materials for Glass Melting Sensor Sheaths. 25th Annual Conference on Composites, Advanced Ceramics, Materials, and Structures: A: Ceramic Engineering and Science. Proceedings, Materials Science and Technology Division Los Alamos National Laboratory Los Alamos, 22(3), 59–64.

    Google Scholar 

  145. Vaidya RU. Plasma sprayed functionally graded and layered MoSi2-Al2O3 composites for high temperature sensor sheath application. In: International conference on intelligent processing and manufacturing of materials, Vancouver

    Google Scholar 

  146. Bharti I, Gupta N, Gupta KM (2013) Novel applications of functionally graded nano, optoelectronic and thermoelectric materials. J Mater Mech Manuf 1(3):221–224

    Google Scholar 

  147. Udupa G, Rao SS, Gangadharan KV (2012) Future applications of carbon nanotube reinforced functionally graded composite materials. In: International conference on advances in engineering, science and management, pp 399–404

    Google Scholar 

  148. Asadi H, Akbarzadeh AH, Wang Q (2015) Nonlinear thermo-inertial instability of functionally graded shape memory alloy sandwich plates. Compos Struct 120:496–508

    Article  Google Scholar 

  149. Asadi H, Akbarzadeh AH, Chen ZT, Aghdam MM (2015) Enhanced thermal stability of functionally graded sandwich cylindrical shells by shape memory alloys. Smart Mater Structs 24(4) (in press)

    Google Scholar 

  150. DiOrio AM, Luo X, Lee KM, Mather PT (2011) A functionally graded shape memory polymer. Soft Matter 7:68–74

    Article  Google Scholar 

  151. Lu H, Huang WM, Leng J (2014) Functionally graded and self assembled carbon nanofiller and boron nitride in nanopaper in electrical actuation of shape memory nanocomposites. Compos Part B Eng 62:1–4

    Article  Google Scholar 

  152. Aysha SCPM, Varghese B, Baby A (2014) A review on functionally graded materials. Int J Eng Sci 3(6):90–101

    Google Scholar 

  153. Nemat-Alla M (2009) Reduction of thermal stresses by composition optimization of two-dimensional functionally graded materials. Acta Mech 208(3):147–161

    Article  Google Scholar 

  154. Nemat-Alla M, Ata MH, Bayoumi MR, Eldeen WK (2011) Powder metallurgical fabrication and microstructural investigations of Aluminum/Steel functionally graded material. Mat Sci App 2:1708–1718

    Google Scholar 

  155. Yang Q, Gao CF, Chen W (2010) Stress analysis of functionally graded material plate with a circular hole. Arch Appl Mech 80:895–907

    Article  Google Scholar 

  156. Cho HK, Rowlands RE (2009) Optimizing fiber direction in perforated orthotropic media to reduce stress concentration. J Compos Mater 43:1177–1198

    Article  Google Scholar 

  157. Sheng GG, Wang X (2013) Nonlinear vibration control of functionally graded laminated cylindrical shells. Compos Part B Eng 52:1–10

    Article  Google Scholar 

  158. Sheng GG, Wang X (2009) Active control of functionally graded laminated cylindrical shells. Compos Struct 90(4):448–457

    Article  Google Scholar 

  159. Ni M, Leung MKH, Leung DYC (2007) Micro-scale modeling of solid oxide fuel cells with microstructurally graded electrodes. J Power Sources 168:369–378

    Article  Google Scholar 

  160. Woodward B, Kashtalyan M (2012) Performance of functionally graded plates under localised transverse loading. Compos Struct 94(7):2254–2262

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge the financial support provided by the Department of Science and Technology, India, for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep S. Ahankari .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ahankari, S.S., Kar, K.K. (2017). Functionally Graded Composites: Processing and Applications. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_4

Download citation

Publish with us

Policies and ethics