Skip to main content

Ionic Polymer Metal Composites

  • Chapter
  • First Online:
Composite Materials

Abstract

Ionic polymer metal composites (IPMCs) are electro-active polymers with excellent electromechanical coupling properties. They are efficient candidates in many advanced technological applications such as actuators, artificial muscles, biomimetic sensors, etc. The manufacturing of electrodes for IPMCs is very critical in their electromechanical coupling. Force optimization, selection of cations and particle size distribution within the IPMC structure, etc. are the various factors, which determines their efficiency. In this chapter, we briefly discuss the structure, components and working mechanisms of IPMCs. The synthesis and characterizations of IPMCs are discussed in detail with the help of examples. A brief outlook on the modeling and potential applications of IPMCs is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett M, Leo D (2006) Morphological and electromechanical characterization of ionic liquid/Nafion polymer composites. In: Bar-Cohen Y (ed) Proceedings of SPIE 5759: smart structures and materials 2005: electroactive polymer actuators and devices (EAPAD), vol 5759. SPIE, Bellingham. doi:10.1117/12.599983

    Google Scholar 

  2. Nasser SN, Li JY (2000) Electromechanical response of ionic polymer-metal composites. J Appl Phys 87:3321

    Article  Google Scholar 

  3. Kim KJ, Shahinpoor M (2003) Ionic polymer-metal composites: II. Manufacturing techniques. Smart Mater Struct 12(1):65

    Article  Google Scholar 

  4. Shahinpoor M, Bar-Cohen Y, Simpson JO, Smith J (1998) Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: a review. Smart Mater Struct 7:15

    Article  Google Scholar 

  5. Millet P, Durand R, Dartyge E, Tourillon G, Fontaine A (1993) Precipitation of metallic platinum into Nafion ionomer membranes: I. Experimental results. J Electrochem Soc 140:1373

    Article  Google Scholar 

  6. Kim KJ, Shahinpoor M (2002) Development of three dimensional ionic polymer-metal composites as artificial muscles. Polymer 43:797

    Article  Google Scholar 

  7. Lee SJ, Han MJ, Kim SJ, Jho JY, Lee HY, Kim YH (2006) A new fabrication method for IPMC actuators and application to artificial fingers. Smart Mater Struct 15:1217

    Article  Google Scholar 

  8. Malone E, Lipson H (2006) Freeform fabrication of ionomeric polymer-metal composite actuators. Rapid Prototyp J 12:244

    Article  Google Scholar 

  9. Uchida M, Taya M (2001) Solid polymer electrolyte actuator using electrode reaction. Polymer 42:9281

    Article  Google Scholar 

  10. Sheppard SA, Campbell SA, Smith JR, Lloyd GW, Walsh FC, Ralph TR (1998) Electrochemical and microscopic characterization of platinum-coated perfluorosulfonic acid (Nafion 117) materials. Analyst 123:1923

    Article  Google Scholar 

  11. Madden PGA, Madden JDW, Anquetil PA, Vandesteeg NA, Hunter IW (2004) The relation of conducting polymer actuator material properties to performance. IEEE J Ocean Eng 29:706

    Article  Google Scholar 

  12. Newbury KM, Leo DJ (2002) Electromechanical modeling and characterization of ionic polymer benders. J Intell Mater Syst Struct 13:51

    Article  Google Scholar 

  13. Nasser SN, Wu Y (2003) Comparative experimental study of ionic polymer–metal composites with different backbone ionomers and in various cation forms. J Appl Phys 93:5255

    Article  Google Scholar 

  14. Kuhn W, Hargitay B, Katchalsky A, Eisenberg H (1950) Reversible dilation and contraction by changing the state of ionization of high-polymer acid networks. Nature 165:514

    Article  Google Scholar 

  15. Tiwari R, Garcia E (2011) The state of understanding of ionic polymer metal composite architecture: a review. Smart Mater Struct 20:83001

    Article  Google Scholar 

  16. Osada Y, Gong J (1993) Stimuli-responsive polymer gels and their application to chemomechanical systems. Prog Polym Sci 18:187

    Article  Google Scholar 

  17. Park K, Lee B, Kim H-M, Choi K-S, Hwang G, Byun G-S, Lee H-K (2013) IPMC based biosensor for the detection of biceps brachii muscle movements. Int J Electrochem Sci 8:4098

    Google Scholar 

  18. Shahinpoor M (1995) New effect in ionic polymeric gels: the ionic flexogelectric effect. In: Jardine AP (ed) Proceedings of SPIE, smart structures and materials 1995: smart Materials, vol 2441. SPIE, Washington, DC, p 42

    Chapter  Google Scholar 

  19. Bonomo C, Brunetto P, Fortuna L, Giannone P, Graziani S, Strazzeri S (2008) A tactile sensor for biomedical applications based on IPMCs. IEEE Sens J 8:1445

    Article  Google Scholar 

  20. Rossi DD, Parrini P, Chiarelli P, Buzzigoli G (1985) Electrically induced contractile phenomenon in charged polymer networks: preliminary study on the feasibility of muscle-like structures. Trans Am Soc Artif Intern Organs 31:60

    Google Scholar 

  21. Rossi DD, Domenici C, Chiarelli P (1988) Analogues of biological tissues for mechanoelectrical transduction: tactile sensors and muscle-like actuators. In: Dario P (ed) Sensors and sensory systems for advanced robots, NATO-AS1 series. Springer, Berlin, p 201

    Chapter  Google Scholar 

  22. Shahinpoor M (1994) Micro-electro-mechanics of ionic polymeric gels as electrically controlled artificial muscles. In: Rogers CA, Wallace GG (eds) Proceedings of the second international conference on intelligent materials (ICIM94). Technomic Publishing, Switzerland, p 1095

    Google Scholar 

  23. Tiwari R, Kim KJ, Kim SM (2008) Ionic polymer metal composite as energy harvesters. Smart Mater Struct 4:549

    Article  Google Scholar 

  24. Farinholt KM, Pedrazas NA, Schluneker DM, Burt DW, Farrar CR (2009) An energy harvesting comparison of piezoelectric and ionically conducting polymers. J Intell Mater Syst Struct 20:633

    Article  Google Scholar 

  25. Porfiri M, Peterson SD (2013) Energy harvesting from fluids using ionic polymer metal composites. In: Elvin N, Erturk A (eds) Advances in energy harvesting methods. Springer, New York, pp 221–239

    Chapter  Google Scholar 

  26. Aureli M, Prince C, Porfiri M, Peterson SD (2010) Energy harvesting from base excitation of ionic polymer metal composites in fluid environments. Smart Mater Struct 19:15003

    Article  Google Scholar 

  27. Brufau-Penella J, Puig-Vidal M, Giannone P, Graziani S, Strazzeri S (2008) Characterization of the harvesting capabilities of an ionic polymer metal composite device. Smart Mater Struct 17:15009

    Article  Google Scholar 

  28. Kordesch KV, Simader GR (1995) Environmental impact of fuel cell technology. Chem Rev 95:191

    Article  Google Scholar 

  29. Kim KJ, Shahinpoor M, Razani A (2000) Preparation of IPMCs used in fuel cells, electrolysis, and hydrogen sensors. In: Bar-Cohen Y (ed) Proceedings of the SPIE smart structures and materials 2000: electroactive polymer actuators and devices (EAPAD), vol 3987. SPIE, Washington, DC, p 311

    Chapter  Google Scholar 

  30. Yoon YS, Park HC, Yoon GJ, Jee SH (2008) Ionic polymer metal composite electrolyte for fuel cell. US Patent 20080003479 A1

    Google Scholar 

Download references

Acknowledgement

The authors acknowledge the financial support provided by Aeronautics Research & Development Board, India for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamal K. Kar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akhtar, S.N., Cherusseri, J., Ramkumar, J., Kar, K.K. (2017). Ionic Polymer Metal Composites. In: Kar, K. (eds) Composite Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49514-8_7

Download citation

Publish with us

Policies and ethics