Skip to main content

Electron Acceptor Interactions Between Organohalide-Respiring Bacteria: Cross-Feeding, Competition, and Inhibition

  • Chapter
  • First Online:
Organohalide-Respiring Bacteria

Abstract

Because of the stepwise, progressive nature of reductive dehalogenation reactions, polyhalogenated parent electron acceptors and their corresponding intermediary dehalogenation products are almost always simultaneously present in the environments where these processes occur. Moreover, a wide variety of polyhalogenated industrial chemicals find their way into the environment, frequently at the same manufacturing or processing facility, resulting in complex mixtures of pollutants in the subsurface. Therefore, cross-feeding, competition , and inhibition are inevitable in these systems and their magnitude or impact must be quantified to better predict and promote the rate and extent of detoxification. Numerical simulations of reactive transport that incorporate fitted parameters describing these processes provide useful tools to evaluate scenarios. Direct experimental evidence of inhibition or competition using defined enzyme and microbial assays provides a more mechanistic understanding of these effects. Combining carefully executed, well-designed experiments with modeling ultimately provides the most useful data for fundamental understanding as well as decision-making in the context of remediation .

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamson DT, Parkin GF (2000) Impact of mixtures of chlorinated aliphatic hydrocarbons on a high-rate, tetraehloroethene-dechlorinating enrichment culture. Environ Sci Technol 34(10):1959–1965

    Article  CAS  Google Scholar 

  • Adrian L, Manz W, Szewzyk U, Görisch H (1998) Physiological characterization of a bacterial consortium reductively dechlorinating 1,2,3- and 1,2,4-trichlorobenzene. Appl Environ Microbiol 64(2):496–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Aulenta F, Pera A, Rossetti S, Papini MP, Majone M (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors. Water Res 41(1):27–38

    Article  CAS  PubMed  Google Scholar 

  • Ballerstedt H, Hantke J, Bunge M, Werner B, Gerritse J, Andreesen JR, Lechner U (2004) Properties of a trichlorodibenzo-p-dioxin-dechlorinating mixed culture with a Dehalococcoides as putative dechlorinating species. FEMS Microbiol Ecol 47(2):223–234

    Article  CAS  PubMed  Google Scholar 

  • Becker JG (2006) A modeling study and implications of competition between Dehalococcoides ethenogenes and other tetrachloroethene-respiring bacteria. Environ Sci Technol 40(14):4473–4480

    Article  CAS  PubMed  Google Scholar 

  • Becker JG, Seagren EA (2009) Modeling the effects of microbial competition and hydrodynamics on the dissolution and detoxification of dense nonaqueous phase liquid contaminants. Environ Sci Technol 43(3):870–877

    Article  CAS  PubMed  Google Scholar 

  • Bedard DL (2008) A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls—from sediment to defined medium. Annu Rev Microbiol 62(1):253–270

    Article  CAS  PubMed  Google Scholar 

  • Berggren DRV, Marshall IPG, Azizian MF, Spormann AM, Semprini L (2013) Effects of sulfate reduction on the bacterial community and kinetic parameters of a dechlorinating culture under chemostat growth conditions. Environ Sci Technol 47(4):1879–1886

    Article  CAS  PubMed  Google Scholar 

  • Bommer M, Kunze C, Fesseler J, Schubert T, Diekert G, Dobbek H (2014) Structural basis for organohalide respiration. Science 346(6208):455–458

    Article  CAS  PubMed  Google Scholar 

  • Brisson VL, West KA, Lee PKH, Tringe SG, Brodie EL, Alvarez-Cohen L (2012) Metagenomic analysis of a stable trichloroethene-degrading microbial community. ISME J 6(9):1702–1714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chambon JC, Bjerg PL, Scheutz C, Baelum J, Jakobsen R, Binning PJ (2013) Review of reactive kinetic models describing reductive dechlorination of chlorinated ethenes in soil and groundwater. Biotechnol Bioeng 110(1):1–23

    Article  CAS  PubMed  Google Scholar 

  • Chambon JC, Broholm MM, Binning PJ, Bjerg PL (2010) Modeling multi-component transport and enhanced anaerobic dechlorination processes in a single fracture-clay matrix system. J Contam Hydrol 112(1–4):77–90

    Article  CAS  PubMed  Google Scholar 

  • Chan CCH, Mundle SOC, Eckert T, Liang X, Tang S, Lacrampe-Couloume G, Edwards EA, Sherwood Lollar B (2012) Large carbon isotope fractionation during biodegradation of chloroform by Dehalobacter cultures. Environ Sci Technol 46:10154–10160

    CAS  PubMed  Google Scholar 

  • Chan WWM, Grostern A, Loffler FE, Edwards EA (2011) Quantifying the effects of 1,1,1-trichloroethane and 1,1-dichloroethane on chlorinated ethene reductive dehalogenases. Environ Sci Technol 45(22):9693–9702

    Article  CAS  PubMed  Google Scholar 

  • Chen MJ, Abriola LM, Amos BK, Suchomel EJ, Pennell KD, Löffler FE, Christ JA (2013) Microbially enhanced dissolution and reductive dechlorination of PCE by a mixed culture: model validation and sensitivity analysis. J Contam Hydrol 151:117–130

    Article  CAS  PubMed  Google Scholar 

  • Christ JA, Abriola LM (2007) Modeling metabolic reductive dechlorination in dense non-aqueous phase liquid source-zones. Adv Water Resour 30(6–7):1547–1561

    Article  CAS  Google Scholar 

  • Chung J, Rittmann BE (2008) Simultaneous bio-reduction of trichloroethene, trichloroethane, and chloroform using a hydrogen-based membrane biofilm reactor. Water Sci Technol 58(3):495–501

    Article  CAS  PubMed  Google Scholar 

  • Cupples AM, Spormann AM, McCarty PL (2004) Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms. Environ Sci Technol 38(18):4768–4774

    Article  CAS  PubMed  Google Scholar 

  • Daprato RC, Löffler FE, Hughes JB (2007) Comparative analysis of three tetrachloroethene to ethene halorespiring consortia suggests functional redundancy. Environ Sci Technol 41(7):2261–2269

    Article  CAS  PubMed  Google Scholar 

  • Demirtepe H, Kjellerup B, Sowers KR, Imamoglu I (2015) Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model. J Hazard Mater 296:120–127

    Article  CAS  PubMed  Google Scholar 

  • Dillehay JL, Bowman KS, Yan J, Rainey FA, Moe WM (2014) Substrate interactions in dehalogenation of 1,2-dichloroethane, 1,2-dichloropropane, and 1,1,2-trichloroethane mixtures by Dehalogenimonas spp. Biodegradation 25(2):301–312

    Article  CAS  PubMed  Google Scholar 

  • Doherty RE (2000) A history of the production and use of carbon tetrachloride, tetrachloroethylene, trichloroethylene and 1,1,1-trichloroethane in the united states: part 2–trichloroethylene and 1,1,1-trichloroethane. Environ Forens 1(2):83–93

    Article  CAS  Google Scholar 

  • Duchesneau MN, Workman R, Baddour FR, Dennis P (2007) Combined Dehalobacter and Dehalococcoides bioaugmentation for bioremediation of 1,1,1-trichloroethane and chlorinatedethenes. Paper presented at the 9th international in situ and on-site bioremediation symposium, Baltimore, Maryland

    Google Scholar 

  • Duhamel M, Edwards EA (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides. FEMS Microbiol Ecol 58(3):538–549

    Article  CAS  PubMed  Google Scholar 

  • Duhamel M, Wehr SD, Yu L, Rizvi H, Seepersad D, Dworatzek S, Cox EE, Edwards EA (2002) Comparison of anaerobic dechlorinating enrichment cultures maintained on tetrachloroethene, trichloroethene, cis-dichloroethene and vinyl chloride. Water Res 36(17):4193–4202

    Article  CAS  PubMed  Google Scholar 

  • Fagervold SK, Watts JEM, May HD, Sowers KR (2005) Sequential reductive dechlorination of meta-chlorinated polychlorinated biphenyl congeners in sediment microcosms by two different chloroflexi phylotypes. Appl Environ Microbiol 71(12):8085–8090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fennell DE, Gossett JM (1998) Modeling the production of and competition for hydrogen in a dechlorinating culture. Becker, Jennifer G, Research Support, US Govt, Non-PHS United States. Environ Sci Technol 40(14):4473–4480 (2006 July 15); 32(16):2450–2460

    Google Scholar 

  • Futagami T, Okamoto F, Hashimoto H, Fukuzawa K, Higashi K, Nazir K, Wada E, Suyama A, Takegawa K, Goto M, Nakamura K, Furukawa K (2011) Enrichment and characterization of a trichloroethene-dechlorinating consortium containing multiple “Dehalococcoides” strains. Biosci Biotechnol Biochem 75(7):1268–1274

    Article  CAS  PubMed  Google Scholar 

  • Grostern A, Chan WWM, Edwards EA (2009) 1,1,1-trichloroethane and 1,1-dichloroethane reductive dechlorination kinetics and co-contaminant effects in a Dehalobacter-containing mixed culture. Environ Sci Technol 43(17):6799–6807

    Article  CAS  PubMed  Google Scholar 

  • Grostern A, Duhamel M, Dworatzek S, Edwards EA (2010) Chloroform respiration to dichloromethane by a Dehalobacter population. Environ Microbiol 12(4):1053–1060

    Article  CAS  PubMed  Google Scholar 

  • Grostern A, Edwards EA (2006a) A 1,1,1-trichloroethane-degrading anaerobic mixed microbial culture enhances biotransformation of mixtures of chlorinated ethenes and ethanes. Appl Environ Microbiol 72(12):7849–7856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grostern A, Edwards EA (2006b) Growth of Dehalobacter and Dehalococcoides spp. during degradation of chlorinated ethanes. Appl Environ Microbiol 72(1):428–436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haest PJ, Springael D, Seuntjens P, Smolders E (2012) Self-inhibition can limit biologically enhanced TCE dissolution from a TCE DNAPL. Chemosphere 89(11):1369–1375

    Article  CAS  PubMed  Google Scholar 

  • Haest PJ, Springael D, Smolders E (2010) Dechlorination kinetics of TCE at toxic TCE concentrations: Assessment of different models. Water Res 44(1):331–339

    Article  CAS  PubMed  Google Scholar 

  • Häggblom MM, Bossert ID (2003) Dehalogenation: microbial processes and environmental applications. Springer, Berlin

    Google Scholar 

  • He J, Holmes VF, Lee PK, Alvarez-Cohen L (2007) Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl Environ Microbiol 73(9):2847–2853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He JZ, Robrock KR, Alvarez-Cohen L (2006) Microbial reductive debromination of polybrominated diphenyl ethers (PBDEs). Environ Sci Technol 40(14):4429–4434

    Article  CAS  PubMed  Google Scholar 

  • Heavner GLW, Rowe AR, Mansfeldt CB, Pan JK, Gossett JM, Richardson RE (2013) Molecular biomarker-based biokinetic modeling of a PCE-dechlorinating and methanogenic mixed culture. Environ Sci Technol 47(8):3724–3733

    Article  CAS  PubMed  Google Scholar 

  • Huang D, Becker JG (2011) Dehalorespiration model that incorporates the self-inhibition and biomass inactivation effects of high tetrachloroethene concentrations. Environ Sci Technol 45(3):1093–1099

    Article  PubMed  Google Scholar 

  • Hurvich CM, Tsai C-L (1989) Regression and time series model selection in small samples. Biometrika 76:297–307

    Article  Google Scholar 

  • Ise K, Suto K, Inoue C (2011) Microbial diversity and changes in the distribution of dehalogenase genes during dechlorination with different concentrations of cis-DCE. Environ Sci Technol 45(12):5339–5345

    Article  CAS  PubMed  Google Scholar 

  • Lai YJ, Becker JG (2013) Compounded effects of chlorinated ethene inhibition on ecological interactions and population abundance in a DehalococcoidesDehalobacter coculture. Environ Sci Technol 47(3):1518–1525

    CAS  PubMed  Google Scholar 

  • Lee IS, Bae JH, Yang YR, McCarty PL (2004) Simulated and experimental evaluation of factors affecting the rate and extent of reductive dehalogenation of chloroethenes with glucose. J Contam Hydrol 74(1–4):313–331

    Article  CAS  PubMed  Google Scholar 

  • Löffler FE, Sanford RA, Tiedje JM (1996) Initial characterization of a reductive dehalogenase from Desulfitobacterium chlororespirans Co23. Appl Environ Microbiol 62(10):3809–3813

    PubMed  PubMed Central  Google Scholar 

  • Löffler FE, Yan J, Ritalahti KM, Adrian L, Edwards EA, Konstantinidis KT, Müller JA, Fullerton H, Zinder SH, Spormann AM (2013) Dehalococcoides mccartyi gen. nov., sp. nov., obligately organohalide-respiring anaerobic bacteria relevant to halogen cycling and bioremediation, belong to a novel bacterial class, Dehalococcoidia classis nov., order Dehalococcoidales ord. nov. and family Dehalococcoidaceae fam. nov., within the phylum Chloroflexi. Int J Syst Evol Microbiol 63(Pt 2):625–635

    Google Scholar 

  • MacNelly A, Kai M, Svatos M, Diekert G, Schubert T (2014) Functional heterologous production of reductive dehalogenases from Desulfitobacterium hafniense strains. App Envron Microbiol 80(14):4313–4322

    Google Scholar 

  • Maillard J, Charnay M-P, Regeard C, Rohrbach-Brandt E, Rouzeau-Szynalski K, Rossi P, Holliger C (2011) Reductive dechlorination of tetrachloroethene by a stepwise catalysis of different organohalide respiring bacteria and reductive dehalogenases. Biodegradation 22(5):949–960

    Article  CAS  PubMed  Google Scholar 

  • Manchester MJ, Hug LA, Zarek M, Zila A, Edwards EA (2012) Discovery of a trans-Dichloroethene-respiring Dehalogenimonas species in the 1,1,2,2-tetrachloroethane-dechlorinating WBC-2 consortium. Appl Environ Microbiol 78(15):5280–5287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire T, Hughes JB (2003) Effects of surfactants on the dechlorination of chlorinated ethenes. Environ Toxicol Chem 22(11):2630–2638

    Article  CAS  PubMed  Google Scholar 

  • Mendoza-Sanchez I, Cunningham J (2012) Efficient algorithms for modeling the transport and biodegradation of chlorinated ethenes in groundwater. Transp Porous Media 92(1):165–185

    Article  CAS  Google Scholar 

  • Nelson JL, Fung JM, Cadillo-Quiroz H, Cheng X, Zinder SH (2011) A role for Dehalobacter spp. in the reductive dehalogenation of dichlorobenzenes and monochlorobenzene. Environ Sci Technol 45(16):6806–6813

    Article  CAS  PubMed  Google Scholar 

  • Nelson JL, Jiang J, Zinder SH (2014) Dehalogenation of chlorobenzenes, dichlorotoluenes, and tetrachloroethene by three Dehalobacter spp. Environ Sci Technol 48(7):3776–3782

    Article  CAS  PubMed  Google Scholar 

  • Nijenhuis I, Zinder SH (2005) Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl Environ Microbiol 71(3):1664–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parthasarathy A, Stich TA, Lohner ST, Lesnefsky A, Britt RD, Spormann A (2015) Heterologously expressed vinyl chloride reductive dehalogenase (VcrA) from Dehalococcoides mccartyi strain VS. J Am Chem Soc 137:3525–3532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul L, Herrmann S, Koch CB, Philips J, Smolders E (2013) Inhibition of microbial trichloroethylene dechorination by Fe (III) reduction depends on Fe mineralogy: A batch study using the bioaugmentation culture KB-1. Water Res 47(7):2543–2554

    Article  CAS  PubMed  Google Scholar 

  • Paul L, Smolders E (2014) Inhibition of iron (III) minerals and acidification on the reductive dechlorination of trichloroethylene. Chemosphere 111:471–477

    Article  CAS  PubMed  Google Scholar 

  • Payne KA, Quezada CP, Fisher K, Dunstan MS, Collins FA, Sjuts H, Levy C, Hay S, Rigby SE, Leys D (2015) Reductive dehalogenase structure suggests a mechanism for B12-dependent dehalogenation. Nature 517(7535):513–516

    Article  CAS  PubMed  Google Scholar 

  • Pon G, Hyman MR, Semprini L (2003) Acetylene inhibition of trichloroethene and vinyl chloride reductive dechlorination. Environ Sci Technol 37(14):3181–3188

    Article  CAS  PubMed  Google Scholar 

  • Popat SC, Deshusses MA (2011) Kinetics and inhibition of reductive dechlorination of trichloroethene, cis-1,2-dichloroethene and vinyl chloride in a continuously fed anaerobic biofilm reactor. Environ Sci Technol 45(4):1569–1578

    Article  CAS  PubMed  Google Scholar 

  • Ritalahti KM, Amos BK, Sung Y, Wu QZ, Koenigsberg SS, Löffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72(4):2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosner BM, McCarty PL, Spormann AM (1997) In vitro studies on reductive vinyl chloride dehalogenation by an anaerobic mixed culture. Appl Environ Microbiol 63(11):4139–4144

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rouzeau-Szynalski K, Maillard J, Holliger C (2011) Frequent concomitant presence of Desulfitobacterium spp. and “Dehalococcoides” spp. in chloroethene-dechlorinating microbial communities. Appl Microbiol Biotechnol 90(1):361–368

    Article  CAS  PubMed  Google Scholar 

  • Sabalowsky AR, Semprini L (2010) Trichloroethene and cis-1,2-dichloroethene concentration-dependent toxicity model simulates anaerobic dechlorination at high concentrations: I. Batch-Fed Reactors. Biotechnol Bioeng 107(3):529–539

    Article  CAS  PubMed  Google Scholar 

  • Schaefer CE, Condee CW, Vainberg S, Steffan RJ (2008) Bioaugmentation for chlorinated ethenes using Dehalococcoides sp.: comparison between batch and column experiments. Chemosphere 75:141–148

    Article  Google Scholar 

  • Scheutz C, Durant ND, Hansen MH, Bjerg PL (2011) Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface—a critical review. Water Res 45(9):2701–2723

    Article  CAS  PubMed  Google Scholar 

  • Sleep BE, Sykes JF (1993) Compositional simulation of groundwater contamination by organic compounds: 1. model development and verification. Water Resour Res 29(6):1697–1708

    Article  CAS  Google Scholar 

  • Smatlak CR, Gossett JM, Zinder SH (1996) Comparative kinetics of hydrogen utilization for reductive dechlorination of tetrachloroethene and methanogenesis in an anaerobic enrichment culture. Environ Sci Technol 30(9):2850–2858

    Article  CAS  Google Scholar 

  • Tang S, Edwards EA (2013) Identification of Dehalobacter reductive dehalogenases that catalyse dechlorination of chloroform, 1, 1, 1-trichloroethane and 1, 1-dichloroethane. Philos Trans R Soc B: Biol Sci 368 (1616)

    Google Scholar 

  • Tang S, Gong Y, Edwards EA (2012) Semi-automatic in silico gap closure enabled de novo assembly of two Dehalobacter genomes from metagenomic data. PLoS ONE 7(12):e52038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Townsend GT, Suflita JM (1997) Influence of sulfur oxyanions on reductive dehalogenation activities in Desulfomonile tiedjei. Appl Environmental Microbiology 63(9):3594–3599

    CAS  Google Scholar 

  • Vainberg S, Condee CW, Steffan RJ (2009) Large-scale production of bacterial consortia for remediation of chlorinated solvent-contaminated groundwater. J Ind Microbiol Biotechnol 36(9):1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Vandermeeren P, Herrmann S, Cichocka D, Busschaert P, Lievens B, Richnow HH, Springael D (2014) Diversity of dechlorination pathways and organohalide respiring bacteria in chlorobenzene dechlorinating enrichment cultures originating from river sludge. Biodegradation 25(5):757–776

    Article  CAS  PubMed  Google Scholar 

  • Watts JE, Wu Q, Schreier SB, May HD, Sowers KR (2001) Comparative analysis of polychlorinated biphenyl-dechlorinating communities in enrichment cultures using three different molecular screening techniques. Environ Microbiol 3(11):710–719

    Article  CAS  PubMed  Google Scholar 

  • Wei K (2012) Substrates and substrate interactions in anaerobic dechlorinating cultures. Master’s Thesis, University of Toronto, Toronto, ON

    Google Scholar 

  • Wei N, Finneran KT (2011) Influence of ferric iron on complete dechlorination of trichloroethylene (TCE) to ethene: Fe(III) reduction does not always inhibit complete dechlorination. Environ Sci Technol 45(17):7422–7430

    Article  CAS  PubMed  Google Scholar 

  • Wei N, Finneran KT (2013) Low and high acetate amendments are equally as effective at promoting complete dechlorination of trichloroethylene (TCE). Biodegradation 24(3):413–425

    Article  CAS  PubMed  Google Scholar 

  • Yang YR, Pesaro M, Sigler W, Zeyer J (2005) Identification of microorganisms involved in reductive dehalogenation of chlorinated ethenes in an anaerobic microbial community. Water Res 39(16):3954–3966

    Article  CAS  PubMed  Google Scholar 

  • Yeh DH, Pennell KD, Pavlostathis SG (1999) Effect of tween surfactants on methanogenesis and microbial reductive dechlorination of hexachlorobenzene. Environ Toxicol Chem 18(7):1408–1416

    Article  CAS  Google Scholar 

  • Yu S, Semprini L (2004) Kinetics and modeling of reductive dechlorination at high PCE and TCE concentrations. Biotechnol Bioeng 88(4):451–464

    Article  CAS  PubMed  Google Scholar 

  • Yu SH, Dolan ME, Semprini L (2005) Kinetics and inhibition of reductive dechlorination of chlorinated ethylenes by two different mixed cultures. Environ Sci Technol 39(1):195–205

    Article  CAS  PubMed  Google Scholar 

  • Yu ZT, Smith GB (2000) Inhibition of methanogenesis by C-1- and C-2-polychlorinated aliphatic hydrocarbons. Environ Toxicol Chem 19(9):2212–2217

    Article  CAS  Google Scholar 

  • Zhang H, Ziv-El M, Rittmann BE, Krajmalnik-Brown R (2010) Effect of dechlorination and sulfate reduction on the microbial community structure in denitrifying membrane-biofilm reactors. Environ Sci Technol 44(13):5159–5164

    Article  CAS  PubMed  Google Scholar 

  • Ziv-El M, Popat SC, Parameswaran P, Kang DW, Polasko A, Halden RU, Rittmann BE, Krajmalnik-Brown R (2012) Using electron balances and molecular techniques to assess trichoroethene-induced shifts to a dechlorinating microbial community. Biotechnol Bioeng 109(9):2230–2239

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the contributions of the many students, postdocs, and industrial and academic collaborators who have contributed to the research and insights into reductive dehalogenation and anaerobic microbial processes over the years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Edwards .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wei, K., Grostern, A., Chan, W.W.M., Richardson, R.E., Edwards, E.A. (2016). Electron Acceptor Interactions Between Organohalide-Respiring Bacteria: Cross-Feeding, Competition, and Inhibition. In: Adrian, L., Löffler, F. (eds) Organohalide-Respiring Bacteria. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49875-0_13

Download citation

Publish with us

Policies and ethics