Skip to main content

Prädation, Weidegang und Krankheiten

  • Chapter
  • First Online:
Ökologie

Zusammenfassung

Nach einem Beispiel für einen Prädator oder Räuber gefragt, werden die meisten Menschen spontan mit ziemlicher Sicherheit so etwas wie „Löwe“, „Tiger“ oder „Eisbär“ nennen – auf jeden Fall ein großes, gefährliches Tier, dessen Angriff für seine Beute sofort tödlich ist.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    Alle Rechte © Telegraph Herald (Dubuque, IA). Kein Nachdruck ohne Genehmigung.

Bibliographie

  • Ehrlen, J. (2003) Fitness components versus total demographic effects: evaluating herbivore impacts on a perennial herb. American Naturalist, 162, 796–810

    Article  Google Scholar 

  • Koop, J.A.H., Huber, S.K., Laverty, S.M. & Clayton, D.H. (2011) Experimental demonstration of the fitness consequences of an introduced parasite of Darwin’s finches. PLoS ONE, 6, e19706

    Article  Google Scholar 

  • Begon, M., Sait, S.M. & Thompson, D.J. (1995) Persistence of a predator–prey system: refuges and generation cycles? Proceedings of the Royal Society of London, Series B, 260, 131–137

    Article  Google Scholar 

  • Pennings, S.C. & Callaway, R.M. (2002) Parasitic plants: parallels and contrasts with herbivores. Oecologia, 131, 479–489

    Article  Google Scholar 

  • Murray, D.L., Cary, J.R. & Keith, L.B. (1997) Interactive effects of sublethal nematodes and nutritional status on snowshoe hare vulnerability to predation. Journal of Animal Ecology, 66, 250–264

    Article  Google Scholar 

  • Strauss, S.Y. & Agrawal, A.A. (1999) The ecology and evolution of plant tolerance to herbivory. Trends in Ecology and Evolution, 14, 179–185

    Article  CAS  Google Scholar 

  • Lennartsson, T., Nilsson, P. & Tuomi, J. (1998) Induction of overcompensation in the field gentian, Gentianella campestris. Ecology, 79, 1061–1072

    Article  Google Scholar 

  • Pavia, H. & Toth, G.B. (2000) Inducible chemical resistance to herbivory in the brown seaweed Ascophyllum nodosum. Ecology, 81, 3212–3225

    Article  Google Scholar 

  • Agrawal, A.A. (1998) Induced responses to herbivory and increased plant performance. Science, 279, 1201–1202

    Article  CAS  Google Scholar 

  • Oedekoven, M.A. & Joern, A. (2000) Plant quality and spider predation affects grasshoppers (Acrididae): food-quality-dependent compensatory mortality. Ecology, 81, 66–77

    Article  Google Scholar 

  • FitzGibbon, C.D. & Fanshawe, J. (1989) The condition and age of Thomson’s gazelles killed by cheetahs and wild dogs. Journal of Zoology, 218, 99–107

    Article  Google Scholar 

  • FitzGibbon, C.D. (1990) Anti-predator strategies of immature Thomson’s gazelles: hiding and the prone response. Animal Behaviour, 40, 846–855

    Article  Google Scholar 

  • Maron, J.L. & Kauffman, M.J. (2006) Habitat-specific impacts of multiple consumers on plant population dynamics. Ecology, 8, 113–124

    Article  Google Scholar 

  • Klemola, T., Koivula, M., Korpimaki, E. & Norrdahl, K. (2000) Experimental tests of predation and food hypotheses for population cycles of voles. Proceedings of the Royal Society of London, Series B, 267, 351–356

    Article  CAS  Google Scholar 

  • Courant, S. & Fortin, D. (2011) Time allocation of bison in meadow patches driven by potential energy gains and group size dynamics. Oikos, 121, 1163–1173

    Article  Google Scholar 

  • Disma, G., Sokolowski, M.B.C. & Tonneau, F. (2011) Children’s competition in a natural setting: evidence for the ideal free distribution. Evolution and Human Behaviour, 32,373–379

    Article  Google Scholar 

  • Volterra, V. (1926) Variations and fluctuations of the numbers of individuals in animal species living together. (Reprinted in 1931. In: Animal Ecology (R.N. Chapman, ed.), pp. 409–448. McGraw Hill, New York.)

    Google Scholar 

  • Lotka, A.J. (1932) The growth of mixed population: two species competing for a common food supply. Journal of the Washington Academy of Sciences, 22, 461–469

    Google Scholar 

  • Yoshida, T., Jones, L.E., Ellner, S.P., Fussmann, G.F. & Hairston, N.G., Jr. (2003) Rapid evolution drives ecological dynamics in a predator–prey system. Nature, 424, 303–306

    Article  CAS  Google Scholar 

  • MacLulick, D.A. (1937) Fluctuations in numbers of the varying hare (Lepus americanus). University of Toronto Studies, Biology Series, 43, 1–136

    Google Scholar 

  • Krebs, C.J., Boonstra, R., Boutin, S. & Sinclair, A.R.E. (2001) What drives the 10-year cycle of snowshoe hares? Bioscience, 51, 25–35

    Article  Google Scholar 

  • Stenseth, N.C., Falck, W., Bjornstad, O.N. & Krebs, C.J. (1997) Population regulation in snowshoe hare and lynx populations: asymmetric food web configurations between the snowshoe hare and the lynx. Proceedings of the National Academy of Science of the USA, 94, 5147–5152

    Article  CAS  Google Scholar 

  • Anderson, R.M. (1982) Epidemiology. In: Modern Parasitology (F.E.G. Cox, ed.), pp. 205–251. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Dabbagh, A., Gacic-Dobo, M., Simons, E., Featherstone, D., Strebel, P., Okwo-Bele, J. M., Hoekstra, E., Chopra, M., Uzicanin, A. & Cochi, S. (2009) Global measles mortality, 2000–2009. Morbidity and Mortality Weekly Report 2009, 58, 1321–1326

    Google Scholar 

  • Keeling, M.J., Rohani, P. & Grenfell, B.T. (2001) Seasonally-forced disease dynamics explored as switching between attractors. Physica D, 148, 317–335

    Article  Google Scholar 

  • Paterson, S. & Viney, M.E. (2002) Host immune responses are necessary for density dependence in nematode infections. Parasitology, 125, 283–292

    Article  CAS  Google Scholar 

  • Janssen, A., van Gool, E., Lingeman, R., Jacas, J. & van de Klashorst, G. (1997) Metapopulation dynamics of a persisting predator-prey system in the laboratory: time series analysis. Experimental and Applied Acarology, 21, 415–430

    Article  Google Scholar 

  • Murdoch, W.W. & Stewart-Oaten, A. (1975) Predation and population stability. Advances in Ecological Research, 9, 1–131

    Article  Google Scholar 

  • Holyoak, M. & Lawler, S.P. (1996) Persistence of an extinction-prone predator–prey interaction through metapopulation dynamics. Ecology, 77, 1867–1879.

    Article  Google Scholar 

  • Bonsall, M.B., French, D.R. & Hassell, M.P. (2002) Metapopulation structure affects persistence of predator–prey interactions. Journal of Animal Ecology, 71, 1075–1084

    Article  Google Scholar 

  • Kullberg, C. & Ekman, J. (2000) Does predation maintain tit community diversity? Oikos, 89, 41–45

    Article  Google Scholar 

  • Mwendera, E.J., Saleem, M.A.M. & Woldu, Z. (1997) Vegetation response to cattle grazing in the Ethiopian Highlands. Agriculture, Ecosystems and Environment, 64, 43–51

    Article  Google Scholar 

  • Lubchenco, J. (1978) Plant species diversity in a marine intertidal community: importance of herbivore food preference and algal competitive abilities. American Naturalist, 112, 23–39

    Article  Google Scholar 

  • Gende, S.M., Quinn, T.P. & Willson, M.F. (2001) Consumption choice by bears feeding on salmon. Oecologia, 127, 372–382

    Article  CAS  Google Scholar 

  • Karban, R., Agrawal, A.A., Thaler, J.S. & Adler, L.S. (1999) Induced plant responses and information content about risk of herbivory. Trends in Ecology and Evolution, 14, 443–447

    Article  CAS  Google Scholar 

  • Karels, T.J. & Boonstra, R. (2000) Concurrent density dependence and independence in populations of arctic ground squirrels. Nature, 408, 460–463

    Article  CAS  Google Scholar 

  • Valeix, M., Loveridge, A.J., Chamaille-Jammes, S., Davidson, Z., Murindagomo, F., Fritz, H. & McDonald, D.W. (2009) Behavioral adjustments of African herbivores to predation risk by lions: spatiotemporal variations influence habitat use. Ecology, 90, 23–30

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Begon, M., Howarth, R.W., Townsend, C.R. (2017). Prädation, Weidegang und Krankheiten. In: Ökologie. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49906-1_7

Download citation

Publish with us

Policies and ethics