Skip to main content

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 436))

  • 3151 Accesses

Abstract

Satellite orbit control refers to the process of generating thrust for tracking a particular orbit in the presence of orbital perturbations. The particular orbit is mission dependent. It could be a low Earth orbit (LEO), used for Earth imaging, a geostationary orbit (GEO) used for communication and weather monitoring, or an interplanetary orbit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alfriend, K., Vadali, S., Gurfil, P., How, J., Breger, L.: Spacecraft Formation Flying: Dynamics, Control and Navigation. Elseiver, Oxford (2010)

    Google Scholar 

  • Battin, R.: An Introduction to the Mathematics and Methods of Astrodynamics. American Institute of Aeronautics and Astronautics, Reston (1999)

    Book  MATH  Google Scholar 

  • Conway, B.: Spacecraft Trajectory Optimization. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  • Fehse, W.: Automated Rendezvous and Docking of Spacecraft. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  • Flandro, G.A.: From instrumented comets to grand tours: On the history of gravity assist. In: Proceeding of 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA (2001)

    Google Scholar 

  • Gurfil, P.: Nonlinear feedback control of low-thrust orbital transfer in a central gravitational field. Acta Astronaut. 60 (8), 631–648 (2007)

    Article  ADS  Google Scholar 

  • Haykin, S.: Neural Networks: A Comprehensive Foundation, 3rd edn. Prentice-Hall, Upper Saddle River (2008)

    MATH  Google Scholar 

  • Jurdjevic, V., Quinn, J.P.: Controllability and stability. J. Differ. Equ. 28 (3), 381–389 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Kamel, A., Tibbitts, R.: Some useful results on initial node location for near-equatorial circular satellite orbits. Celest. Mech. 8, 45–73 (1973)

    Article  ADS  MATH  Google Scholar 

  • Kawano, I., Mokuno, M., Kasai, T., Suzuki, T.: Result of autonomous rendezvous docking experiment of Engineering Test Satellite-VII. J. Spacecr. Rocket 38 (1), 105–111 (2001)

    Article  ADS  Google Scholar 

  • Kechichian, J.A.: The analysis of the relative motion in general elliptic orbit with respect to a dragging and precessing coordinate frame. In: Proceedings of the AAS/AIAA Astrodynamics Conference, Sun Valley, ID, pp. 2053–2074 (1997)

    Google Scholar 

  • Kluever, C.A.: Simple guidance scheme for low-thrust orbit transfers. J. Guid. Control Dyn. 21 (6), 1015–1017 (1998)

    Article  ADS  Google Scholar 

  • Lamkin, S., Mccandless, W.: Pathfinder autonomous rendezvous and docking project. Tech. Rep. NASA TM-102163, NASA Johnson Space Center (1990)

    Google Scholar 

  • Longuski, J.M., Williams, S.N.: Automated design of gravity-assist trajectories to Mars and the outer planets. Celest. Mech. Dyn. Astron. 52 (3), 207–220 (1991)

    Article  ADS  Google Scholar 

  • Meltzer, M.: Mission to Jupiter: a history of the Galileo project. Tech. Rep. 7, NASA STI/Recon (2007)

    Google Scholar 

  • Petropoulos, A.E., Longuski, J.M., Bonfiglio, E.P.: Trajectories to Jupiter via gravity assists from Venus, Earth, and Mars. J. Spacecr. Rocket 37 (6), 776–783 (2000)

    Article  ADS  Google Scholar 

  • Pisarevsky, D.M., Gurfil, P.: Optimizing multiple-flyby orbits for increasing the resolution of space telescopes. J. Spacecr. Rocket 46 (2), 373–380 (2009)

    Article  ADS  Google Scholar 

  • Pisarevsky, D.M., Kogan, A., Guelman, M.: Building interplanetary trajectories with multiple gravity-assisted maneuvers. J. Spacecr. Rocket 44 (4), 985–992 (2007)

    Article  ADS  Google Scholar 

  • Poincaré, H.: Les méthodes nouvelles de la mécanique céleste. Il Nuovo Cimento (1895-1900) 10 (1), 128–130 (1899)

    Google Scholar 

  • Ross, I.M.: Space trajectory optimization and l 1-optimal control problems. In: Gurfil, P. (Ed.) Modern Astrodynamics, pp. 155–186 (2006)

    Google Scholar 

  • Rumford, T.E.: Demonstration of Autonomous Rendezvous Technology (DART) project summary. In: Proceedings of SPIE: The International Society for Optical Engineering, International Society for Optics and Photonics, pp. 10–19 (2003)

    Google Scholar 

  • Schaub, H., Alfriend, K.T.: Hybrid Cartesian and orbit elements feedback law for formation flying spacecraft. J. Guid. Control Dyn. 25 (2), 387–393 (2002)

    Article  ADS  Google Scholar 

  • Schaub, H., Vadali, S.R., Alfriend, K.T.: Spacecraft formation flying control using mean orbital elements. J. Astronaut. Sci. 48 (1), 69–87 (2000)

    Google Scholar 

  • Sims, J.A., Staugler, A.J., Longuski, J.M.: Trajectory options to Pluto via gravity assists from Venus, Mars, and Jupiter. J. Spacecr. Rocket 34 (3), 347–353 (1997)

    Article  ADS  Google Scholar 

  • Stengel, R.F.: Optimal Control and Estimation. Dover Publications, Mineola (1994)

    MATH  Google Scholar 

  • Vallado, D.: Fundamentals of Astrodynamics and Applications, 2nd edn. Microcosm Press and Kluwer Academic Publishers, London (2001)

    MATH  Google Scholar 

  • Weismuller, T., Leinz, M.: GNC technology demonstrated by the Orbital Express autonomous rendezvous and capture sensor system. In: 29th Annual AAS Guidance and Control Conference, Breckenridge, Colorado, USA, pp. 1–9 (2006)

    Google Scholar 

  • Wenfei, W., Prathyush, M., Declan, B., Simone, C., Nuno, P., Emanuele, S., Ambroise, B., Alexandre, G., Aymeric, K., Sohrab, S., Samir, B.: GNC technology demonstrated by the Orbital Express autonomous rendezvous and capture sensor system. In: AIAA Guidance, Navigation, and Control Conference, Breckenridge, Colorado, USA, pp. 1–9 (2012)

    Google Scholar 

  • Woffinden, D.C., Geller, D.K.: Navigating the road to autonomous orbital rendezvous. J. Spacecr. Rocket 44 (4), 898–909 (2007)

    Article  ADS  Google Scholar 

  • Zhang, H., Gurfil, P.: Nanosatellite cluster keeping under thrust uncertainties. J. Guid. Control Dyn. 37 (5), 1406–1414 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gurfil, P., Seidelmann, P.K. (2016). Satellite Orbit Control. In: Celestial Mechanics and Astrodynamics: Theory and Practice. Astrophysics and Space Science Library, vol 436. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-50370-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-50370-6_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50368-3

  • Online ISBN: 978-3-662-50370-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics