Skip to main content

Winds from Black Hole Accretion Flows: Formation and Their Interaction with ISM

  • Chapter
  • First Online:
Astrophysics of Black Holes

Part of the book series: Astrophysics and Space Science Library ((ASSL,volume 440))

Abstract

Black hole hot accretion flows occur in the regime of relatively low accretion rates and are operating in the nuclei of most of the galaxies in the universe. In this chapter, I will review one of the most important progresses in recent years in this field, which is about the wind or outflow. This progress is mainly attributed to the rapid development of numerical simulations of accretion flows, combined with observations on, e.g., Sgr A*, the supermassive black hole in the Galactic center. The following topics will be covered: theoretically why do we believe strong winds exist; where and how are they produced and accelerated; what are their main properties such as mass flux and terminal velocity; the comparison of the properties between wind and “disk-jet”; the main observational evidences for wind in Sgr A*; and one observational manifestation of the interaction between wind and interstellar medium, namely the formation of the Fermi bubbles in the Galactic center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As we will introduce in the next paragraph, this assumption is likely true only when the magnetic field is not included in the analysis of the stability.

  2. 2.

    In the calculations of many wind properties presented in Sadowski et al. [44] such as the mass flux of wind, they do the time-average first to the velocity field. Since wind is instantaneous, their result should be regarded as the lower limit.

References

  1. M.A. Abramowicz, P.C. Fragile, Living Reviews in Relativity 16, 1 (2013)

    Article  ADS  Google Scholar 

  2. M.A. Abramowicz, X. Chen, S. Kato, J.P. Lasota, O. Regev, ApJ 438, L37 (1995)

    Article  ADS  Google Scholar 

  3. M.A. Abramowicz, I.V. Igumenshchev, E. Quataert, R. Narayan, ApJ 565, 1101 (2002)

    Article  ADS  Google Scholar 

  4. M. Ackermann, A. Albert, W.B. Atwood, et al., ApJ 793, 64 (2014)

    Google Scholar 

  5. D.K. Aitken, J. Greaves, A. Chrysostomou et al., ApJ 534, L173 (2000)

    Article  ADS  Google Scholar 

  6. O. Blaes, Spac. Sci. Rev. 183, 21 (2014)

    Article  ADS  Google Scholar 

  7. R.D. Blandford, M.C. Begelman, MNRAS 303, L1 (1999)

    Article  ADS  Google Scholar 

  8. R.D. Blandford, M.C. Begelman, MNRAS 349, 66 (2004)

    Article  Google Scholar 

  9. R.D. Blandford, D.G. Payne, MNRAS 199, 883 (1982)

    Article  ADS  Google Scholar 

  10. R.D. Blandford, R.L. Znajek, MNRAS 179, 433 (1977)

    Article  ADS  Google Scholar 

  11. M.C. Begelman, MNRAS 420, 2912 (2012)

    Article  ADS  Google Scholar 

  12. G.C. Bower, M.C.H. Wright, H. Falcke, D.C. Backer, ApJ 588, 331 (2003)

    Article  ADS  Google Scholar 

  13. D.F. Bu, M.C. Wu, Y.F. Yuan, MNRAS 459, 746 (2016)

    Google Scholar 

  14. D.F. Bu, F. Yuan, Z. Gan, X.H. Yang, ApJ 813, 83 (2016a)

    Google Scholar 

  15. D.F. Bu, F. Yuan, Z. Gan, X.H. Yang, ApJ 823, 90 (2016b)

    Google Scholar 

  16. L. Ciotti, J.P. Ostriker, D. Proga, ApJ 717, 708 (2010)

    Google Scholar 

  17. R.M. Crocker, F. Aharonian, PhRvL 106, 101102 (2011)

    ADS  Google Scholar 

  18. A.C. Fabian, ARA&A 50, 455 (2012)

    Article  ADS  Google Scholar 

  19. T. Fang, X. Jiang, ApJL 785, L24 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  20. J. Frank, A. King, D.J. Raine, Accretion Power in Astrophysics (Cambridge University Press, Cambridge, 2002)

    Book  Google Scholar 

  21. W.M. Gu, ApJ 799, 71 (2015)

    Google Scholar 

  22. F. Guo, W.G. Mathews, ApJ 756, 181 (2012)

    Article  ADS  Google Scholar 

  23. I.V. Igumenshchev, M.A. Aramowicz, ApJ 537, L27 (1999)

    Article  ADS  Google Scholar 

  24. I.V. Igumenshchev, M.A. Aramowicz, ApJS 130, 463 (2000)

    Article  ADS  Google Scholar 

  25. I.V. Igumenshchev, ApJ 577, L31 (2002)

    Google Scholar 

  26. I.V. Igumenshchev, R. Narayan, M.A. Abramowicz, ApJ 592, 1042 (2003)

    Article  ADS  Google Scholar 

  27. A. King, K. Pounds, ARA&A 53, 115 (2015)

    Article  ADS  Google Scholar 

  28. J. Kormendy, L.C. Ho, ARA&A 51, 511 (2013)

    Article  ADS  Google Scholar 

  29. J. Li, J. Ostriker, R. Sunyaev, ApJ 767, 105 (2013)

    Google Scholar 

  30. D. Lynden-Bell, MNRAS 341, 1360 (2003)

    Article  ADS  Google Scholar 

  31. D.P. Marrone, J.M. Moran, J.H. Zhao, R. Rao, ApJ 654, 57 (2007)

    Article  ADS  Google Scholar 

  32. A. Moller, A. Sadowski (2015) ApJ submitted (arXiv:1509.06644)

  33. G. Mou, F. Yuan, D. Bu et al., ApJ 790, 109 (2014)

    Article  ADS  Google Scholar 

  34. G. Mou, F. Yuan, Z. Gan, M. Sun, ApJ 811, 37 (2015)

    Article  ADS  Google Scholar 

  35. R. Narayan, I.V. Igumenshchev, M.A. Abramowicz, ApJ 539, 798 (2000)

    Article  ADS  Google Scholar 

  36. R. Narayan, A. Sädowski, R.F. Penna, A.K. Kulkarni, MNRAS 426, 3241 (2012)

    Article  ADS  Google Scholar 

  37. R. Narayan, I. Yi, ApJ 428, L13 (1994)

    Article  ADS  Google Scholar 

  38. R. Narayan, I. Yi, ApJ 452, 710 (1995)

    Article  ADS  Google Scholar 

  39. U.L. Pen, C.D. Matzner, S. Wong, ApJ 596, L207 (2003)

    Article  ADS  Google Scholar 

  40. J.E. Pringle, ARA&A 19, 137 (1981)

    Article  ADS  Google Scholar 

  41. D. Proga, ASP Conference Series, in proceedings of the conference held 16-21 October, 2006 by L.C. Ho, J,-M. Wang. vol. 373 (Xi’an Jioatong University, Xi’an, China, 2007), p. 267

    Google Scholar 

  42. E. Quataert, A. Gruzinov, ApJ 539, 809 (2000)

    Google Scholar 

  43. E. Quataert, A. Gruzinov, ApJ 545, 842 (2000)

    Google Scholar 

  44. A. Sadowski, R. Narayan, R. Penna, Y. Zhu, MNRAS 436, 3856 (2013)

    Article  ADS  Google Scholar 

  45. N.I. Shakura, R.A. Sunyaev, A&A 24, 337 (1973)

    ADS  Google Scholar 

  46. J.M. Stone, J.E. Pringle, MNRAS 322, 461 (2001)

    Article  ADS  Google Scholar 

  47. J.M. Stone, J.E. Pringle, M.C. Begelman, MNRAS 310, 1002 (1999)

    Article  ADS  Google Scholar 

  48. M. Su, T.R. Slatyer, D.P. Finkbeiner, ApJ 724, 1044 (2010)

    Article  ADS  Google Scholar 

  49. M. Tahara, J. Kataoka, Y. Takeuchi et al., ApJ 802, 91 (2015)

    Article  ADS  Google Scholar 

  50. T. Totani, PASJ 58, 965 (2006)

    ADS  Google Scholar 

  51. J.C. Vernaleo, C.S. Reynolds, ApJ 645, 83 (2006)

    Article  ADS  Google Scholar 

  52. Q.D. Wang et al., Science 341, 981 (2013)

    Article  ADS  Google Scholar 

  53. F.G. Xie, F. Yuan, MNRAS 427, 1580 (2012)

    Article  ADS  Google Scholar 

  54. F. Yuan, MNRAS 324, 119 (2001)

    Article  ADS  Google Scholar 

  55. F. Yuan, J. Lin, K. Wu, L. Ho, MNRAS 395, 2183 (2009)

    Article  ADS  Google Scholar 

  56. F. Yuan, D. Bu, M. Wu, ApJ 761, 130 (2012)

    Article  ADS  Google Scholar 

  57. F. Yuan, M. Wu, D. Bu, ApJ 761, 129 (2012)

    Article  ADS  Google Scholar 

  58. F. Yuan, R. Narayan, ARA&A 52, 529 (2014)

    Article  ADS  Google Scholar 

  59. F. Yuan, Z. Gan, R. Narayan, A. Sädowski, D. Bu, X. Bai, ApJ 804, 101 (2015)

    Article  ADS  Google Scholar 

  60. K. Zubovas, S. Nayakshin, MNRAS 424, 666 (2012)

    Google Scholar 

  61. K. Zubovas, A.R. King, S. Nayakshin, MNRAS 415, L21 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported in part by the National Basic Research Program of China (973 Program, grant 2014CB845800), the Strategic Priority Research Program The Emergence of Cosmological Structures of CAS (grant XDB09000000), the Natural Science Foundation of China (grants 11133005 and 11573051), and the CAS/SAFEA International Partnership Program for Creative Research Teams.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Yuan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yuan, F. (2016). Winds from Black Hole Accretion Flows: Formation and Their Interaction with ISM. In: Bambi, C. (eds) Astrophysics of Black Holes. Astrophysics and Space Science Library, vol 440. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52859-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52859-4_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52857-0

  • Online ISBN: 978-3-662-52859-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics