Skip to main content

Energy Analysis Model for HVAC System

  • Chapter
  • First Online:
Modeling and Control in Air-conditioning Systems

Part of the book series: Energy and Environment Research in China ((EERC))

  • 1246 Accesses

Abstract

This chapter firstly deals with energy models of HVAC components including chiller, boiler, pump/fan, cooling tower, and water-to-air surface heat exchanger.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Browne, M.W., Bansal, P.K.: Steady-state model of centrifugal liquid chillers. Int. J. Refrig. 21(5), 343–358 (1998)

    Article  Google Scholar 

  2. Wang, S.K.: Heating systems furnaces and boilers. In: Handbook of Air Conditioning and Refrigeration, second edn. McGraw-Hill, New York (2000)

    Google Scholar 

  3. Michel, A.B., Bernard, B.: Pumping energy and variable frequency drives. ASHRAE J. 12, 37–39 (1999)

    Google Scholar 

  4. Jorge, F., Armando, C.O.: Thermal behavior of closed wet cooling towers for use with chilled ceilings. Appl. Therm. Eng. 20(13), 1225–1236 (2000)

    Article  Google Scholar 

  5. ASHRAE: ASHRAE Handbook—HVAC Systems and Equipment. ASHRAE Inc, Atlanta (2008)

    Google Scholar 

  6. Mirth, D.R., Ramadhyani, S., Hittle, D.C.: Thermal performance of chilled-water cooling coils operating at low water velocities. ASHRAE Trans. 99(1), 43–53 (1993)

    Google Scholar 

  7. Khan, A.Y.: Heat and mass transfer performance analysis of cooling coils at part-load operating conditions. ASHRAE Trans. 100(1), 54–62 (1994)

    Google Scholar 

  8. Istamoglu, Y.: A new approach for the prediction of the heat transfer rate of the wire-on-tube type heat exchanger—use of an artificial neural network model. Appl. Therm. Eng. 23(2), 243–249 (2003)

    Article  Google Scholar 

  9. Xue, D.: Air Conditioning. Tsinghua University Press, Beijing (2006) (in Chinese)

    Google Scholar 

  10. Yao, Y., Lian, Z., Hu, Y., Hou, Z.: The method of thermal metering on the air-side for the fan-coil units. ASHRAE Trans. 110(part 2), 325–334 (2004)

    Google Scholar 

  11. Urban, R.A.: Design considerations and operating characteristics of variable volume systems. ASHRAE J. 12(2), 77–84 (1969)

    Google Scholar 

  12. Amold, D.: Air conditioning in office buildings after World War Two. ASHRAE J. 41(7), 33–41 (1999)

    Google Scholar 

  13. Yao, Y., Lian, Z., Hu, Y., Hou, Z.: Energy-cost allocation based on the theory of frequency response. Appl. Energy 79(4), 371–383 (2004)

    Article  Google Scholar 

  14. Murakami, Y., Terano, M., Mizutani, K., Harada, M., Kuno, S.: Field experiments on energy consumption and thermal comfort in the office environment controlled by occupants’ requirements from PC terminal. Build. Environ. 42(12), 4022–4027 (2007)

    Article  Google Scholar 

  15. Engdahl, F., Johansson, D.: Optimal supply air temperature with respect to energy use in a variable air volume system. Energy Build. 36(3), 205–218 (2004)

    Google Scholar 

  16. Ke, M.T., Weng, K.L., Chiang, C.M.: Performance evaluation of an innovative fan-coil unit: low-temperature differential variable air volume FCU. Energy Build. 39(6), 702–708 (2007)

    Article  Google Scholar 

  17. Taras, M.F.: Is economizer cycle justified for AC applications? ASHRAE J. 47(7), 38–44 (2005)

    Google Scholar 

  18. Fisk, W.J., Seppanen, O., Faulkner, D., Huang, J.: Economic benefits of an economizer system: energy savings and reduced sick leave. ASHRAE Trans. 111(2), 673–679 (2005)

    Google Scholar 

  19. Brandemuehl, M.J., Braun, J.E.: Impact of demand-controlled and economizer ventilation strategies on energy use in buildings. ASHRAE Trans. 105(2), 80–88 (1999)

    Google Scholar 

  20. Nassif, N., Moujaes, S.: A new operating strategy for economizer dampers of VAV system. Energy Build. 40(1), 289–299 (2008)

    Article  Google Scholar 

  21. Liu, M., Claridge, D.E., Park, B.Y.: An advanced economizer controller for dual-duct air-handling systems—with a case application. ASHRAE Trans. 103(2), 156–163 (1997)

    Google Scholar 

  22. Joo, I.S., Liu, M.: Economizer application in dual-duct air-handling units. ASCE 9(4), 126–133 (2003)

    Google Scholar 

  23. Wang, S., Xu, X.: A robust control strategy for combining DCV control with economizer control. Energy Convers. Manag. 43(18), 2569–2588 (2002)

    Article  Google Scholar 

  24. Budaiwi, I.M.: Energy performance of the economizer cycle under three climatic conditions in Saudi Arabia. Int. J. Ambient Energy 22(2), 83–94 (2001)

    Article  Google Scholar 

  25. Yiu, J.C.M., Wang, S.W., Yik, F.W.H.: Assessment of practical applications of outdoor air economizer in Hong Kong. Build. Serv. Eng. Res. Technol. 21(3), 187–198 (2000)

    Article  Google Scholar 

  26. Wang., S.K.: Air systems: variable-air-volume systems. In: Handbook of Air Conditioning and Refrigeration, 2nd edn. McGraw-Hill, New York (2000) (Chapter 21)

    Google Scholar 

  27. Yao, Y., Wang, L.: Energy analysis on VAV system with different air-side economizers in China. Energy Build. 42(8), 1220–1230 (2010)

    Article  MathSciNet  Google Scholar 

  28. Iu, I., Fisher, D.E.: Application of conduction transfer functions and periodic response factors in cooling load calculation procedures. ASHRAE Trans. 110(2), 829–841 (2004)

    Google Scholar 

  29. Chantrasrisalai, C., Iu, I., Eldridge, D.S.: Experimental validation of design cooling load procedures: the heat balance method. ASHRAE Trans. 109(2), 160–173 (2003)

    Google Scholar 

  30. Hittle, D.C., Pedersen, C.O.: Calculating building heating loads using the frequency response of multi-layered slabs. ASHRAE Trans. 87(2), 545–557 (1981)

    Google Scholar 

  31. Yao, Y., Lian, Z., Hou, Z., Liu, W.: Optimal indoor air temperature considering energy savings and thermal comfort in the Shanghai area. In: The 6th International Conference for Enhanced Building Operation, Shenzhen, China, Maximize Comfort: Temperature, Humidity, and IAQ: vol. 1-1-3 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ye Yao .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Shanghai Jiao Tong University Press and Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Yao, Y., Yu, Y. (2017). Energy Analysis Model for HVAC System. In: Modeling and Control in Air-conditioning Systems. Energy and Environment Research in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53313-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53313-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53311-6

  • Online ISBN: 978-3-662-53313-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics