Skip to main content

Visible Light Photocatalytic Inactivation by Bi-based Photocatalysts

  • Chapter
  • First Online:
Advances in Photocatalytic Disinfection

Part of the book series: Green Chemistry and Sustainable Technology ((GCST))

Abstract

During the past decades, photocatalytic process has emerged as a promising alternative strategy for water treatment owning to its wide application in solar energy conversion and environmental remediation. Particularly, bismuth compounds have received remarkable attention as efficient photocatalysts for inactivation of bacteria due to their low cost, excellent photocatalytic activity, and chemical stability. This chapter summarizes the recent advances in the synthesis and photocatalytic inactivation activities of bismuth oxides and oxyhalides, bismuth metallates, plasmonic-bismuth compounds, and other bismuth composite photocatalysts. Emphasis is placed on the enhanced photocatalytic activity of the bismuth compounds which is affected by their crystallinity, microstructure, band gap, morphology, and particle size. Meanwhile, the bacterial inactivation process and mechanism are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burch JD, Thomas KE (1998) Water disinfection for developing countries and potential for solar thermal pasteurization. Sol Energy 64:87–97

    Article  Google Scholar 

  2. World Health Organization (2003) Emerging issues in water and infectious disease 1–22. World Health Organization, Geneva

    Google Scholar 

  3. Byrne JA, Fernandez-Ibanez PA, Dunlop PS, Alrousan D, Hamilton JW (2011) Photocatalytic enhancement for solar disinfection of water: a review. Int J Photoenergy 2011:1–12

    Article  Google Scholar 

  4. Freuze I, Brosillon S, Laplanche A, Tozza D, Cavard J (2005) Effect of chlorination on the formation of odorous disinfection by-products. Water Res 39:2636–2642

    Article  CAS  Google Scholar 

  5. Richardson SD (2003) Disinfection by-products and other emerging contaminants in drinking water. Trends Anal Chem 22:666–684

    Article  CAS  Google Scholar 

  6. Huang WJ, Fang GC, Wang CC (2005) The determination and fate of disinfection by-products from ozonation of polluted raw water. Sci Total Environ 345:261–272

    Article  CAS  Google Scholar 

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    Article  CAS  Google Scholar 

  8. Kubacka A, Fernández MG, Colón G (2011) Advanced nanoarchitectures for solar photocatalytic applications. Chem Rev 112:1555–1614

    Article  Google Scholar 

  9. Kudo A, Miseki Y (2009) Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 38:253–278

    Article  CAS  Google Scholar 

  10. Meng N, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev 11:401–425

    Article  Google Scholar 

  11. Mor GK, Shankar K, Paulose M, Varghese OK, Grimes CA (2006) Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett 6:215–218

    Article  CAS  Google Scholar 

  12. Matsunaga T, Tomoda R, Nakajima T, Wake H (1985) Photo-electrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett 29:211–214

    Article  CAS  Google Scholar 

  13. Zhang L, Kanki T, Sano N, Toyoda A (2003) Development of TiO2 photocatalyst reaction for water purification. Sep Purif Technol 31:105–110

    Article  CAS  Google Scholar 

  14. Jiang L, Wang LZ, Zhang JL (2010) A direct route for the synthesis of nanometer-sized Bi2WO6 particles loaded on a spherical MCM-48 mesoporous molecular sieve. Chem Commun 46:8067–8069

    Article  CAS  Google Scholar 

  15. Zhang X, Ai ZH, Jia FL, Zhang LZ (2008) Generalized one-pot synthesis characterization, and photocatalytic activity of hierarchical BiOX (X = Cl, Br, I) nanoplate microspheres. J Phys Chem C 112:747–753

    Article  CAS  Google Scholar 

  16. Yin WZ, Wang WZ, Zhou L, Sun SM, Zhang L (2010) CTAB-assisted synthesis of monoclinic BiVO4 photocatalyst and its highly efficient degradation of organic dye under visible-light irradiation. J Hazard Mater 173:194–199

    Article  CAS  Google Scholar 

  17. Chen XF, Dai JF, Shi GF, Li L, Wang GY, Yang H (2015) Visible light photocatalytic degradation of dyes by beta-Bi2O3/graphene nanocomposites. J Alloys Compd 649:872–877

    Article  CAS  Google Scholar 

  18. Ding X, Ho W, Shang J, Zhang LZ (2016) Self doping promoted photocatalytic removal of NO under visible light with Bi2MoO6: indispensable role of superoxide ions. Appl Catal B Environ 182:316–325

    Article  CAS  Google Scholar 

  19. Zhang YL, Schultz AM, Salvador PA, Rohrer GS (2011) Spatially selective visible light photocatalytic activity of TiO2/BiFeO3 heterostructures. J Mater Chem 21:4168–4174

    Article  CAS  Google Scholar 

  20. Manna G, Bose R, Pradhan N (2014) Photocatalytic Au-Bi2S3 heteronanostructures. Angew Chem Int Ed 53:6743–6746

    Article  CAS  Google Scholar 

  21. Wang Y, Huang HW, Quan CM, Tian N, Zhang YH (2016) Hydrothermal fabrication of multi-functional Eu3+ and Tb3+ co-doped BiPO4: photocatalytic activity and tunable luminescence properties. J Cryst Growth 433:1–6

    Article  CAS  Google Scholar 

  22. Madhusudan P, Zhang J, Cheng B, Liu G (2013) Photocatalytic degradation of organic dyes with hierarchical Bi2O2CO3 microstructures under visible-light. CrystEngComm 15:231–240

    Article  CAS  Google Scholar 

  23. Hussain AM, Neppolian B, Shim HS, Kim SH, Kim SK, Choi HC et al (2010) Efficiency enhancement in bulk heterojunction polymer photovoltaic cells using ZrTiO4/Bi2O3 metal-oxide nanocomposites. Jpn J Appl Phys 49:4R

    Google Scholar 

  24. Park S, Kim S, Sun GJ, Lee C (2015) Synthesis, structure, and ethanol gas sensing properties of In2O3 nanorods decorated with Bi2O3 nanoparticles. ACS Appl Mater Interfaces 7:8138–8146

    Article  CAS  Google Scholar 

  25. Guan LL, He SF, Zhu XD, Liu T, Sun K (2015) Densification behavior and space charge blocking effect of Bi2O3 and Gd2O3 Co-doped CeO2 as electrolyte for solid oxide fuel cells. Electrochim Acta 161:129–136

    Article  CAS  Google Scholar 

  26. Sanchez MD, Juarez RI, Torres MLM, de Leon AI (2016) Photocatalytic properties of Bi2O3 powders obtained by an ultrasound-assisted precipitation method. Ceram Int 42:2013–2020

    Article  Google Scholar 

  27. Qin F, Zhao HP, Li GF, Yang H, Li J, Wang RM et al (2014) Size-tunable fabrication of multifunctional Bi2O3 porous nanospheres for photocatalysis, bacteria inactivation and template-synthesis. Nanoscale 6:5402–5409

    Article  CAS  Google Scholar 

  28. Wang WJ, Chen XQ, Liu G, Shen ZR, Xia DH, Wong PK et al (2015) Monoclinic dibismuth tetraoxide: a new visible-light-driven photocatalyst for environmental remediation. Appl Catal B Environ 176:444–453

    Article  Google Scholar 

  29. Wang WJ, Zhang LS, An TC, Li GY, Yip HY, Wong PK (2011) Comparative study of visible-light-driven photocatalytic mechanisms of dye decolorization and bacterial disinfection by B–Ni-codoped TiO2 microspheres: the role of different reactive species. Appl Catal B Environ 108–109:108–116

    Article  Google Scholar 

  30. Wang WJ, Ng TW, Ho WK, Huang JH, Liang SJ, An TC et al (2013) CdIn2S4 microsphere as an efficient visible-light-driven photocatalyst for bacterial inactivation: synthesis, characterizations and photocatalytic inactivation mechanisms. Appl Catal B Environ 129:482–490

    Article  CAS  Google Scholar 

  31. Chen YM, Lu AH, Li Y, Zhang LS, Yip HY, Zhao HJ et al (2011) Naturally occurring sphalerite as a novel cost-effective photocatalyst for bacterial disinfection under visible light. Environ Sci Technol 45:5689–5695

    Article  CAS  Google Scholar 

  32. Wang WJ, Yu JC, Xia DH, Wong PK, Li YC (2013) Graphene and g-C3N4 nanosheets cowrapped elemental α-sulfur as a novel metal-free heterojunction photocatalyst for bacterial inactivation under visible-light. Environ Sci Technol 47:8724–8732

    CAS  Google Scholar 

  33. Zou SJ, Teng F, Chang C, Liu ZL, Wang SR (2015) Controllable synthesis of uniform BiOF nanosheets and their improved photocatalytic activity by an exposed high-energy (002) facet and internal electric field. RSC Adv 5:88936–88942

    Article  CAS  Google Scholar 

  34. Dong F, Sun YJ, Fu M, Wu ZB, Lee SC (2012) Room temperature synthesis and highly enhanced visible light photocatalytic activity of porous BiOI/BiOCl composites nanoplates microflowers. J Hazard Mater 219:26–34

    Article  Google Scholar 

  35. Fu J, Tian YL, Chang BB, Xi FN, Dong XP (2012) BiOBr-carbon nitride heterojunctions: synthesis, enhanced activity and photocatalytic mechanism. J Mater Chem 22:21159–21166

    Article  CAS  Google Scholar 

  36. Wu D, Wang B, Wang W, An TC, Li GY, Ng TW et al (2009) Visible-light-driven BiOBr nanosheets for highly facet-dependent photocatalytic inactivation of Escherichia coli. J Mater Chem A 10:1940–1943

    Google Scholar 

  37. Jamil TS, Mansor ES, Liethy MAE (2015) Photocatalytic inactivation of E. coli using nano-size bismuth oxyiodide photocatalysts under visible light. J Environ Chem Eng 3:2463–2471

    Article  CAS  Google Scholar 

  38. Li YY, Liu JP, Huang XT (2007) Synthesis and visible-light photocatalytic property of Bi2WO6 hierarchical octahedron-like structures. Nanoscale Res Lett 3:365–371

    Article  Google Scholar 

  39. Finlayson AP, Tsaneva VN, Lyons L, Clark M, Glowacki BA (2006) Evaluation of Bi-W-oxides for visible light photocatalysis. Phys Status Solidi (a) 203:327–335

    Article  CAS  Google Scholar 

  40. Ren J, Wang WZ, Zhang L, Chang J, Hu S (2009) Photocatalytic inactivation of bacteria by photocatalyst Bi2WO6 under visible light. Catal Commun 10:1940–1943

    Article  CAS  Google Scholar 

  41. Zhang ZJ, Wang WZ, Ren J, Xu JH (2012) Highly efficient photocatalyst Bi2MoO6 induced by blue light-emitting diode. Appl Catal B Environ 123–124:89–93

    Article  Google Scholar 

  42. Fan HM, Jiang TF, Li HY, Wang DJ, Wang LL, Zhai JL (2012) Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J Phys Chem C 116:2425–2430

    Article  CAS  Google Scholar 

  43. Wang WJ, Yu Y, An TC, Li GY, Yip HY, Yu JC (2012) Visible-light-driven photocatalytic inactivation of E. coli K-12 by bismuth vanadate nanotubes bactericidal performance and mechanism. Environ Sci Technol 46:4599–4606

    Article  CAS  Google Scholar 

  44. Adán C, Marugán J, Obregón S, Colón G (2015) Photocatalytic activity of bismuth vanadates under UV-A and visible light irradiation: inactivation of Escherichia coli vs oxidation of methanol. Catal Today 240:93–99

    Article  Google Scholar 

  45. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  46. Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 19:604–609

    Article  Google Scholar 

  47. Amano F, Yamakata A, Nogami K, Osawa M, Ohtani B (2008) Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment. J Am Chem Soc 130:17650–17651

    Article  CAS  Google Scholar 

  48. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

  49. Cushing SK, Li J, Meng F, Senty TR, Suri S, Zhi M et al (2012) Photocatalytic activity enhanced by plasmonic resonant energy transfer from metal to semiconductor. J Am Chem Soc 134:15033–15041

    Article  CAS  Google Scholar 

  50. Rycenga M, Cobley CM, Zeng J, Li WY, Moran CH, Zhang Q et al (2011) Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:3669–3712

    Article  CAS  Google Scholar 

  51. Copcoa VE, Luchian C, Dunca S, Bilba N, Hristodor CM (2011) Antibacterial activity of silver-modified natural clinoptilolite. J Mater Sci 46:7121–7128

    Article  Google Scholar 

  52. Ren J, Wang WZ, Sun SM, Zhang L, Chang J (2009) Enhanced photocatalytic activity of Bi2WO6 loaded with Ag nanoparticles under visible light irradiation. Appl Catal B Environ 92:50–55

    Article  CAS  Google Scholar 

  53. Zhang LS, Wong KH, Yip HY, Hu C, Yu JC, Chan CY et al (2010) Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals. Environ Sci Technol 44:1392–1398

    Article  CAS  Google Scholar 

  54. Fang ZK, Yang JN, Cao Y, Zhu LF, Zhang Q, Shu D et al (2013) Disinfection of E. coli using visible-light-driven photocatalyst. Procedia Environ Sci 18:503–508

    Article  CAS  Google Scholar 

  55. Zhu LF, Hu C, Huang YL, Chen ZH, Xia DH, Su MH et al (2012) Enhanced photocatalytic disinfection of E. coli 8099 using Ag/BiOI composite under visible light irradiation. Sep Purif Technol 91:59–66

    Article  CAS  Google Scholar 

  56. Booshehri AY, Goh SCK, Hong JD, Jiang RR, Xu R (2014) Effect of depositing silver nanoparticles on BiVO4 in enhancing visible light photocatalytic inactivation of bacteria in water. J Mater Chem A 2:6209–6217

    Article  CAS  Google Scholar 

  57. Huang TY, Chen YJ, Lai CY, Lin YW (2015) Synthesis, characterization, enhanced sunlight photocatalytic properties, and stability of Ag/Ag3PO4 nanostructure-sensitized BiPO4. RSC Adv 5:43854–43862

    Article  CAS  Google Scholar 

  58. Chang XF, Yu G, Huang J, Li Z, Zhu SF, Yu PF et al (2010) Enhancement of photocatalytic activity over NaBiO3/BiOCl composite prepared by an in situ formation strategy. Catal Today 153:193–199

    Article  CAS  Google Scholar 

  59. Gan HH, Zhang GK, Huang HX (2013) Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli by Bi2O2CO3/Bi3NbO7 composites. J Hazard Mater 250–251:131–137

    Article  Google Scholar 

  60. Xu YS, Zhang ZJ, Zhang WD (2013) Facile preparation of heterostructured Bi2O3/Bi2MoO6 hollow microspheres with enhanced visible-light-driven photocatalytic and antimicrobial activity. Mater Res Bull 48:1420–1427

    Article  CAS  Google Scholar 

  61. Xu YS, Yu YX, Zhang WD (2014) Wide bandgap Bi2O2CO3-Coupled Bi2MoO6 heterostructured hollow microspheres: one-pot synthesis and enhanced visible-light photocatalytic activity. J Nanosci Nanotechnol 14:6800–6808

    Article  CAS  Google Scholar 

  62. Hu XX, Hu C, Qu JH (2006) Photocatalytic decomposition of acetaldehyde and Escherichia coli using NiO/SrBi2O4 under visible light irradiation. Appl Catal B Environ 69:17–23

    Article  CAS  Google Scholar 

  63. Hu C, Hu XX, Guo J, Qu JH (2006) Efficient Destruction of pathogenic bacteria with NiO/SrBi2O4 under visible light irradiation. Environ Sci Technol 40:5508–5513

    Article  CAS  Google Scholar 

  64. Zhao W, Wong KH, Hu C, Yu JC, Chan CY, Qi T et al (2012) Synthesize of Cu2O-CuO/Sr3BiO5.4 and its photocatalytic activity. Appl Surf Sci 258:5955–5959

    Article  CAS  Google Scholar 

  65. Sun B, Qiao Z, Shang K, Fan H, Ai SY (2013) Facile synthesis of silver sulfide/bismuth sulfide nanocomposites for photocatalytic inactivation of Escherichia coli under solar light irradiation. Mater Lett 91:142–145

    Article  CAS  Google Scholar 

  66. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  CAS  Google Scholar 

  67. Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191

    Article  CAS  Google Scholar 

  68. Ruoff R (2008) Graphene: calling all chemists. Nat Nanotechnol 3:10–11

    Article  CAS  Google Scholar 

  69. Zhang Y, Zhu YK, Yu JQ, Yang DJ, Ng TW, Wong PK et al (2013) Enhanced photocatalytic water disinfection properties of Bi2MoO6–RGO nanocomposites under visible light irradiation. Nanoscale 5:6307–6310

    Article  CAS  Google Scholar 

  70. Sunada K, Kikuchi Y, Hashimoto K, Fujishima A (1998) Bactericidal and detoxification effects of TiO2 thin film photocatalysts. Environ Sci Technol 32:726–728

    Article  CAS  Google Scholar 

  71. Wang WJ, Huang GC, Yu JC, Wong PK (2015) Advances in photocatalytic disinfection of bacteria development of photocatalysts and mechanisms. J Environ Sci 34:232–247

    Article  Google Scholar 

  72. Linsebigler AL, Lu GQ, Yates JT (1995) Photocatalysis on TiO2 surfaces-principles, mechanisms, and selected results. Chem Rev 95:735–758

    Article  CAS  Google Scholar 

  73. Fujishima A, Zhang XT, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582

    Article  CAS  Google Scholar 

  74. Yuan JX, Wang EJ, Chen YM, Yang WS, Yao JH, Cao YA (2011) Doping mode, band structure and photocatalytic mechanism of B-N-codoped TiO2. Appl Surf Sci 257:7335–7342

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaoke Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Guo, S., Zhang, G. (2017). Visible Light Photocatalytic Inactivation by Bi-based Photocatalysts. In: An, T., Zhao, H., Wong, P. (eds) Advances in Photocatalytic Disinfection. Green Chemistry and Sustainable Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53496-0_4

Download citation

Publish with us

Policies and ethics