Skip to main content

Fuzzy Gaussian Mixture Models

  • Chapter
  • First Online:
Human Motion Sensing and Recognition

Part of the book series: Studies in Computational Intelligence ((SCI,volume 675))

  • 1073 Accesses

Abstract

In this chapter, in order to improve both the performance and the efficiency of the conventional Gaussian Mixture Models (GMMs), generalised GMMs are firstly introduced by integrating the conventional GMMs and the active curve axis GMMs for fitting non-linear datasets, and then two types of Fuzzy Gaussian Mixture Models (FGMMs) with a faster convergence process are proposed based on the generalised GMMs, inspired from the mechanism of Fuzzy C-means (FCMs) which introduces the degree of fuzziness on the dissimilarity function based on distances. One is named as probability based FGMMs defining the dissimilarity as the multiplicative inverse of probability density function, and the other is distance based FGMMs which define the dissimilarity function focusing the degree of fuzziness only on the distances between points and component centres. Different from FCMs, both of the proposed dissimilarity functions are based on the exponential function of the distance. The FGMMs are compared with the conventional GMMs and the generalised GMMs in terms of the fitting degree and convergence speed. The experimental results show that the proposed FGMMs not only possess the non-linearity to fit datasets with curve manifolds but also have a much faster convergence process saving more than half computational cost than GMMs’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. I. Bilik, J. Tabrikian, and A. Cohen. Gmm-based target classification for ground surveillance doppler radar. Aerospace and Electronic Systems, IEEE Transactions on, 42(1):267–278, Jan. 2006.

    Article  Google Scholar 

  2. S.C. Kim and T.J. Kang. Texture classification and segmentation using wavelet packet frame and Gaussian mixture model. Pattern Recognition, 40(4):1207–1221, 2007.

    Article  MATH  Google Scholar 

  3. J. H. Song, K. H. Lee, J. H. Chang, J. K. Kim, and N. S. Kim. Analysis and improvement of speech/music classification for 3gpp2 smv based on gmm. Signal Processing Letters, IEEE, 15:103–106, 2008.

    Article  Google Scholar 

  4. M. H. Siu, X. Yang, and H. Gish. Discriminatively trained gmms for language classification using boosting methods. IEEE Transactions on Audio, Speech, and Language Processing, 17(1):187–197, Jan. 2009.

    Article  Google Scholar 

  5. Z. David, J. Samuelsson, and M. Nilsson. On entropy-constrained vector quantization using gaussian mixture models. IEEE Transactions on Communications, 56(12):2094–2104, 2008.

    Article  Google Scholar 

  6. L. Lu, A. Ghoshal, and S. Renals. Regularized subspace gaussian mixture models for speech recognition. IEEE Signal Processing Letters, 18:419–422, 2011.

    Article  Google Scholar 

  7. Abolfazl Mehranian and Habib Zaidi. Joint estimation of activity and attenuation in whole-body tof pet/mri using constrained gaussian mixture models. IEEE transactions on medical imaging, 34(9):1808–1821, 2015.

    Article  Google Scholar 

  8. Y. Wang and B. Yuan. Human face tracking using gaussian mixture models and fuzzy shape analysis. International Conference on Signal Processing, 2:1322–1325, 2004.

    Google Scholar 

  9. X. Wang, Y. Wang, X. Feng, and M. Zhou. Adaptive gaussian mixture models based facial actions tracking. International Conference on Computer Science and Software Engineering, 2:923–926, Dec. 2008.

    Google Scholar 

  10. Yue Gao, Rongrong Ji, Longfei Zhang, and Alexander Hauptmann. Symbiotic tracker ensemble toward a unified tracking framework. IEEE Transactions on Circuits and Systems for Video Technology, 24(7):1122–1131, 2014.

    Article  Google Scholar 

  11. S.P. Wilson, E.E. Kuruoglu, and E. Salerno. Fully bayesian source separation of astrophysical images modelled by mixture of gaussians. IEEE Journal of Selected Topics in Signal Processing, 2(5):685–696, Oct. 2008.

    Article  Google Scholar 

  12. D. Persson, T. Eriksson, and P. Hedelin. Packet video error concealment with gaussian mixture models. IEEE Transactions on Image Processing, 17(2):145–154, Feb. 2008.

    Article  MathSciNet  Google Scholar 

  13. MA Balafar. Gaussian mixture model based segmentation methods for brain mri images. Artificial Intelligence Review, 41(3):429–439, 2014.

    Article  Google Scholar 

  14. A. Wahab, Q. Chai, K. T. Chin, and K. Takeda. Driving profile modeling and recognition based on soft computing approach. IEEE Transactions on Neural Networks, 20(4):563–582, April 2009.

    Article  Google Scholar 

  15. M. Vondra and R. Vich. Recognition of Emotions in German Speech Using Gaussian Mixture Models. Multimodal Signals: Cognitive and Algorithmic Issues, pages 256–261, 2009.

    Google Scholar 

  16. T. Routtenberg and J. Tabrikian. Mimo-ar system identification and blind source separation for gmm-distributed sources. IEEE Transactions on Signal Processing, 57(5):1717–1730, May 2009.

    Article  MathSciNet  Google Scholar 

  17. S. Takahashi and S. Tsukiyama. A New Statistical Timing Analysis Using Gaussian Mixture Models for Delay and Slew Propagated Together. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, 92(3):900–911, 2009.

    Article  Google Scholar 

  18. S. Allali, D. Blank, W. Müller, and A. Henrich. Image Data Source Selection Using Gaussian Mixture Models. Lecture Notes In Computer Science, pages 170–181, 2007.

    Google Scholar 

  19. Z. Ju, H. Liu, X. Zhu, and Y. Xiong. Dynamic Grasp Recognition Using Time Clustering, Gaussian Mixture Models and Hidden Markov Models. Journal of Advanced Robotics, 23:1359–1371, 2009.

    Article  Google Scholar 

  20. S.O. Ba and J. M. Odobez. Recognizing visual focus of attention from head pose in natural meetings. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 39(1):16–33, Feb. 2009.

    Article  Google Scholar 

  21. J. Hennebert, A. Humm, and R. Ingold. Modelling spoken signatures with gaussian mixture model adaptation. IEEE International Conference on Acoustics, Speech and Signal Processing, Part II, 2:229–232, April 2007.

    Google Scholar 

  22. M. Montagnuolo and A. Messina. Automatic genre classification of tv programmes using gaussian mixture models and neural networks. International Conference on Database and Expert Systems Applications, pages 99–103, Sept. 2007.

    Google Scholar 

  23. Ju-Chiang Wang, Yi-Hsuan Yang, Hsin-Min Wang, and Shyh-Kang Jeng. Modeling the affective content of music with a gaussian mixture model. IEEE Transactions on Affective Computing, 6(1):56–68, 2015.

    Article  Google Scholar 

  24. A.S. Malegaonkar, A.M. Ariyaeeinia, and P. Sivakumaran. Efficient speaker change detection using adapted gaussian mixture models. IEEE Transactions on Audio, Speech, and Language Processing, 15(6):1859–1869, Aug. 2007.

    Article  Google Scholar 

  25. D. Ververidis and C. Kotropoulos. Gaussian mixture modeling by exploiting the mahalanobis distance. IEEE Transactions on Signal Processing, 56(7):2797–2811, July 2008.

    Article  MathSciNet  MATH  Google Scholar 

  26. Y. Agiomyrgiannakis and Y. Stylianou. Wrapped gaussian mixture models for modeling and high-rate quantization of phase data of speech. IEEE Transactions on Audio, Speech, and Language Processing, 17(4):775–786, 2009.

    Article  Google Scholar 

  27. B. Zhang, C. Zhang, and X. Yi. Active curve axis Gaussian mixture models. Pattern Recognition, 38(12):2351–2362, 2005.

    Article  Google Scholar 

  28. J. C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. Cybernetics and Systems, 3(3):32–57, 1973.

    MathSciNet  MATH  Google Scholar 

  29. J. C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers Norwell, MA, USA, 1981.

    Book  MATH  Google Scholar 

  30. N. R. Pal and J. C. Bezdek. On cluster validity for the fuzzy c-means model. IEEE Transactions on Fuzzy Systems, 3(3):370–379, 1995.

    Article  Google Scholar 

  31. J. Yu, Q. Cheng, and H. Huang. Analysis of the weighting exponent in the fcm. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 34(1):634–639, Feb. 2004.

    Article  Google Scholar 

  32. J. Pei, X. Yang, X. Gao, and W. Xie. On the weighting exponent m in fuzzy C-means(FCM) clustering algorithm. In SPIE proceedings series, pages 246–251. SPIE, 2001.

    Google Scholar 

  33. H. Choe and J. B. Jordan. On the optimal choice of parameters in a fuzzy c-means algorithm. In IEEE International Conference on Fuzzy Systems, pages 349–354, Mar 1992.

    Google Scholar 

  34. S. Miyamoto and M. Mukaidono. Fuzzy c-means as a regularization and maximum entropy approach. In Proceedings of the International Fuzzy Systems Association World Congress, pages 86–92, 1997.

    Google Scholar 

  35. I. Gath and A. B. Geva. Unsupervised optimal fuzzy clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7):773–780, 1989.

    Article  MATH  Google Scholar 

  36. D. E. Gustafson and W. C. Kessel. Fuzzy clustering with a fuzzy covariance matrix. IEEE Conference on Decision and Control, 17:761–766, 1978.

    Google Scholar 

  37. D. Tran, T.V. Le, and M. Wagner. Fuzzy Gaussian Mixture Models For Speaker Recognition. In Fifth International Conference on Spoken Language Processing, pages 759–762. ISCA, 1998.

    Google Scholar 

  38. R.J. Hathaway. Another interpretation of the EM algorithm for mixture distributions. Statistics & probability letters, 4(2):53–56, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  39. H. Ichihashi, K. Miyagishi, and K. Honda. Fuzzy c-means clustering with regularization by KL information. In Proc. of 10th IEEE International Conference on Fuzzy Systems, volume 2, pages 924–927, 2001.

    Google Scholar 

  40. K. Honda and H. Ichihashi. Regularized linear fuzzy clustering and probabilistic pca mixture models. IEEE Transactions on Fuzzy Systems, 13(4):508–516, 2005.

    Article  Google Scholar 

  41. S. Chatzis. A method for training finite mixture models under a fuzzy clustering principle. Fuzzy Sets and Systems, 161:3000–3013, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  42. J. Zeng, L. Xie, and Z.Q. Liu. Type-2 fuzzy Gaussian mixture models. Pattern Recognition, 41(12):3636–3643, 2008.

    Article  MATH  Google Scholar 

  43. X. Huang, Y. Ariki, and M. Jack. Hidden Markov Models for Speech Recognition. Series Edinburgh University Press, 1990.

    Google Scholar 

  44. J. A. Bilmes. A gentle tutorial on the EM algorithm and its application to parameter estimation for gaussian mixture and hidden markov models. CA: International Computer Science Institute, ICSI-TR-97-0, pages 1–5, 1998.

    Google Scholar 

  45. A. Björck and Å. Björck. Numerical methods for least squares problems. Society for Industrial Mathematics, 1996.

    Google Scholar 

  46. R. L. Cannon, J. V. Dave, and J. C. Bezdek. Efficient implementation of the fuzzy c-means clustering algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence, 8(2):248–255, March 1986.

    Article  MATH  Google Scholar 

  47. A. Frank and A. Asuncion. UCI machine learning repository, 2010.

    Google Scholar 

  48. C. S. Chan and H. Liu. Fuzzy Qualitative Human Motion Analysis. IEEE Transactions on Fuzzy Systems, 17(4):851–862, 2009.

    Article  Google Scholar 

  49. X. Ji and H. Liu. Advances in View-Invariant Human Motion Analysis: A Review. IEEE Transactions on Systems, Man and Cybernetics Part C, 40(1):13–24, 2010.

    Google Scholar 

  50. H. Liu. Exploring human hand capabilities into embedded multifingered object manipulation. IEEE Transactions on Industrial Informatics, 7(3):389–398, 2011.

    Article  Google Scholar 

  51. Z. Ju and H. Liu. A unified fuzzy framework for human hand motion recognition. IEEE Transactions on Fuzzy Systems, 19(5):901–913, 2011.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghai Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Liu, H., Ju, Z., Ji, X., Chan, C.S., Khoury, M. (2017). Fuzzy Gaussian Mixture Models. In: Human Motion Sensing and Recognition. Studies in Computational Intelligence, vol 675. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-53692-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-53692-6_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53690-2

  • Online ISBN: 978-3-662-53692-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics