Skip to main content

Enzymkinetik

  • Chapter
  • First Online:
Bioprozesstechnik
  • 20k Accesses

Zusammenfassung

Die Enzymkinetik beschäftigt sich mit der Untersuchung der Geschwindigkeit enzymkatalysierter Reaktionen. Durch die quantitative Analyse des Effekts verschiedener chemischer und physikalischer Parameter, wie beispielsweise Substrat- und Produktkonzentration oder Temperatur, auf die Umsetzungsgeschwindigkeit, können wichtige Informationen bezüglich des zugrundeliegenden Reaktionsmechanismus und der physikalischen Eigenschaften des biologischen Katalysators gewonnen werden. Die Geschwindigkeitsgleichungen, die aus den kinetischen Studien hervorgehen, können dazu verwendet werden, optimale Betriebspunkte für einen Bioprozess zu identifizieren.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Bisswanger, H. (2000) Enzymkinetik: Theorie und Methoden, 3. Auflage Wiley-VCH, Weinheim

    Book  Google Scholar 

  2. Briggs GE, Haldane JBS (1925) A note on the kinetics of enzyme action. Biochem J 19:338–339

    Article  CAS  Google Scholar 

  3. Carbonell P, Lecointre G, Faulon JL (2011) Origins of specificity and promiscuitivity in metabolic networks. J Biol Chem 286:43994–44004

    Article  CAS  Google Scholar 

  4. Chemnitius JM, Haselmeyer KH, Zech R (1982) Identification of isoenzymes in cholinesterase preparations using kinetic data of organo-phosphate inhibition. Anal Biochem 125(2):442–452

    Article  CAS  Google Scholar 

  5. Cleland W (1963a) The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim Biophys Acta 67:104–137

    Article  CAS  Google Scholar 

  6. Cleland, W (1963b). The kinetics of enzyme-catalyzed reactions with two or more substrates or products. II. Inhibition: nomenclature and theory. Biochim Biophys Acta 67:173–187

    Article  CAS  Google Scholar 

  7. Colquhoun D (2006) The quantitative analysis of drug–receptor interactions: A short history. Trends Pharmacol Sci 27:149–157

    Article  CAS  Google Scholar 

  8. Cornish-Bowden A (2012) Fundamentals of enzyme kinetics, 4. Aufl. Wiley-VCH, Weinheim

    Google Scholar 

  9. Cornish-Bowden A (2014) Current IUMB recommendations on enzyme nomenclature and kinetics. Perspect Sci 1:74–87

    Article  Google Scholar 

  10. Dawson RMC, Elliott DC, Elliott WH, Jones KM (1986) Data for Biochemical Research. Clarendon Press, Oxford

    Google Scholar 

  11. Eisenthal R, Danson MJ, Hough DW (2007) Catalytic efficiency and kcat/Km: a useful comparator? Trends Biotechnol 25:247–249

    Article  CAS  Google Scholar 

  12. Elleuche S, Schäfers C, Blank S, Schröder C, Antranikian G (2015) Exploration of extremophiles for high temperature biotechnological processes. Curr Opin Microbiol 25:113–119

    Article  CAS  Google Scholar 

  13. Fahrney DE, Gold AM (1962) Sulfonyl fluorides as inhibitors of esterases. I. Rates of reaction with acetylcholinesterase, α-chymotrypsin, and trypsin. J Am Chem Soc 85:997–1000

    Article  Google Scholar 

  14. Grady JK, Chasteen ND, Harris DC (1988) Radicals from „Good’s“ buffers. Anal Biochem 173(1):111–115

    Article  CAS  Google Scholar 

  15. Hill, AV (1910) The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol-London 40:iv–vii

    Google Scholar 

  16. International Union of Biochemistry (1961) Report of the commission on enzymes. Pergamon Press, Oxford

    Google Scholar 

  17. Iyer PV, Ananthanarayan L (2008) Enzyme stability and stabilization – Aqueous and non-aqueous environment. Proc Biochem 43:1019–1032

    Article  CAS  Google Scholar 

  18. King EL, Altman C (1956) A schematic method of deriving rate laws for enzyme-catalyzed reactions. J Phys Chem-US 60:1375–1378

    Article  CAS  Google Scholar 

  19. Koshland DE, Némethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry-US 5:365–385

    Article  CAS  Google Scholar 

  20. Leatherbarrow RJ (1990) Using linear and non-linear regression to fit biochemical data. Trends Biochem Sci 15:455–458

    Article  Google Scholar 

  21. Liese A, Seelbach K, Wandrey C (2006) Industrial biotransformations, 2. Aufl.. Wiley-VCH, Weinheim

    Book  Google Scholar 

  22. Michaelis L, Menten ML (1913) Die Kinetik der Invertinwirkung. Biochem Z 49:333–369

    CAS  Google Scholar 

  23. Monod J, Wyman J, Changeux (1965) On the nature of allosteric transitions: A plausible model. J Mol Biol 12:88–118

    Article  CAS  Google Scholar 

  24. Nelson DL, Cox MM (2013) Lehninger, Principles of biochemistry. Freeman, New York

    Google Scholar 

  25. Qi F, Dash RK, Han Y, Beard DA (2009) Generating rate equations for complex enzyme systems by a computer-assisted systematic method. BMC Bioinform 10:238

    Article  Google Scholar 

  26. Rakitzis ET (1990) Interpretation of biphasic protein modification and modification-induced enzyme inactivation reaction plots. J Enzyme Inhib 4:57–62

    Article  CAS  Google Scholar 

  27. Salihu A, Alam MZ (2015) Solvent tolerant lipases: A review. Process Biochem 50:86–96

    Article  CAS  Google Scholar 

  28. Schomburg I, Chang A, Schomburg D (2014) Standardization in enzymology – Data integration in the world’s enzyme information system BRENDA. Perspect Sci 1:15–23

    Article  Google Scholar 

  29. Segel IH (1993) Enzyme kinetics. Wiley, New York

    Google Scholar 

  30. Stoll VS, Blanchard JS (1990) Buffers: Principles and practice. Method Enzymol 182:24–38

    Article  CAS  Google Scholar 

  31. Straathof AJJ (2001) Development of a computer program for analysis of enzyme kinetics by progress curve fitting. J Mol Catal B-Enzym 11:991–998

    Article  CAS  Google Scholar 

  32. Strillinger E, Grötzinger SW, Allers T, Eppinger J, Weuster-Botz D (2015) Production of halophilic proteins using Haloferax volcanii H1895 in a stirred-tank bioreactor. https://doi.org/10.1007/s00253-015-7007-1

    Article  Google Scholar 

  33. Tipton K, Boyce S (2000) History of the enzyme nomenclature system. Bioinformatics 16 (1):34–40

    Article  CAS  Google Scholar 

  34. Thomas CR, Geer D (2011) Effects of shear on proteins in solution. Biotechnol Lett 33(3):443–456

    Article  CAS  Google Scholar 

  35. Visser D, Heijnen JJ (2003) Dynamic simulation and metabolic re-design of a branched pathway using linlog kinetics. Metab Eng 5(3):164–176

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Castiglione .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castiglione, K. (2018). Enzymkinetik. In: Chmiel, H., Takors, R., Weuster-Botz, D. (eds) Bioprozesstechnik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54042-8_1

Download citation

Publish with us

Policies and ethics