Skip to main content

Die funktionelle Analyse von Genomen

  • Chapter
  • First Online:
Angewandte Bioinformatik

Zusammenfassung

Im Rahmen des humanen Genomprojekts wurde 2001 das erste Genom des Menschen veröffentlicht. Nach damaligen Schätzungen ging man von etwa 30.000 bis 35.000 menschlichen Genen aus. Heute weiß man jedoch, dass das Genom des Menschen, das stammesgeschichtlich gesehen sehr jung ist, einen enormen Unterschied zwischen der Zahl der Gene und der Genomgröße aufweist. Es beinhaltet etwa 19.000–20.000 Gene (Ezkurdia et al. 2014) bei einer Gesamtgröße von etwa 3,3 Gigabasen (s. auch Kap. 4 und 7). Jede menschliche Zelle mit Ausnahme von Spermien und Eizellen besitzt einen vollständigen Satz dieser Gene. Jedoch unterscheidet sich beispielsweise eine Blutzelle in ihrer Morphologie und Physiologie sehr stark von einer Leberzelle. Wie sind diese Unterschiede zu erklären, wenn alle Zellen das gleiche genetische Material besitzen? Die Antwort ist vergleichsweise einfach. Nicht jedes Gen wird in jeder Zelle transkribiert und exprimiert. Daraus folgt, dass in einer Zelle i. d. R. nur die Proteine vorliegen, die zu einem bestimmten Zeitpunkt im Leben dieser Zelle benötigt werden. Das Proteom einer Zelle oder eines Gewebes ist also vom Zelltyp und seinem momentanen Zustand abhängig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Allis CD, Jenuwein T (2016) The molecular hallmarks of epigenetic control. Nat Rev Genet 17:487–500

    Article  CAS  PubMed  Google Scholar 

  • Berns K, Hijmans EM, Mullenders J et al (2004) A large-scale RNAi screen in human cells identifies new components of the p53 pathway. Nature 428(6981):431–437

    Article  CAS  PubMed  Google Scholar 

  • Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371

    Article  CAS  PubMed  Google Scholar 

  • Brookes AJ, Robinson PN (2015) Human genotype-phenotype databases: aims, challenges and opportunities. Nat Rev Genet 16(12):702–715

    Article  CAS  PubMed  Google Scholar 

  • Churchill GA (2002) Fundamentals of experimental design for cDNA microarrays. Nat Genet Suppl 32:490–495

    Article  CAS  Google Scholar 

  • Duarte NC, Herrgard MJ, Palsson BO (2004) Reconstruction and validation of Saccharomyces cerevisiae iND750, a fully compartmentalized genome-scale metabolic model. Genome Res 14(7):1298–1309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta R, Dutta R (2006) Intelligent Bayes Classifier (IBC) for ENT infection classification in hospital environment. Biomed Eng Online 5:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Dragonieri S, Annema JT, Schot R et al (2009) An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2):166–170

    Article  PubMed  Google Scholar 

  • Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, Vazquez J, Valencia A, Tress ML (2014) Multiple evidence strands suggest that there may be as few as 19,000 human protein-coding genes. Hum Mol Genet 23:5866–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gavin AC, Bosche M, Krause R et al (2002) Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415(6868):141–147

    Article  CAS  PubMed  Google Scholar 

  • Gershon D (2005) DNA microarrays: more than gene expression. Nature 437(7062):1195–1198

    Article  CAS  PubMed  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P et al (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531–537

    Article  CAS  PubMed  Google Scholar 

  • Griffin TJ, Goodlett DR, Aebersold R (2001) Advances in proteome analysis by mass spectrometry. Curr Opin Biotech 12:607–612

    Article  CAS  PubMed  Google Scholar 

  • Holloway AJ, van Laar RK, Tothill RW, Bowtell DL (2002) Options available from start to finish-for obtaining data from DNA microarrays II. Nat Genet Suppl 32:481–489

    Article  CAS  Google Scholar 

  • Ishii N, Robert M, Nakayama Y et al (2004) Toward large-scale modeling of the microbial cell for computer simulation. J Biotechnol 113(1–3):281–294

    Article  CAS  PubMed  Google Scholar 

  • Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y (2001) A comprehensive two-hybrid analysis to explore the yeast interactome. Proc Natl Acad Sci USA 98:4569–4574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji H, Davis RW (2006) Data quality in genomics and microarrays. Nat Biotechnol 24(9):1112–1113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y et al (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421(6920):231–237

    Article  CAS  PubMed  Google Scholar 

  • Karr JR, Sanghvi JC, Macklin DN, Gutschow MV et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150(2):389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kell DB (2006) Systems biology, metabolic modelling and metabolomics in drug discovery and development. Drug Discov Today 11(23–24):1085–1092

    Article  CAS  PubMed  Google Scholar 

  • Koczulla AR, Hattesohl A, Biller H et al (2011) Smelling diseases? A short review on electronic noses. Pneumologie 65(7):401–405

    Article  CAS  PubMed  Google Scholar 

  • MacBeath G (2002) Protein microarrays and proteomics. Nat Genet Suppl 32:526–532

    Article  CAS  Google Scholar 

  • Matsumura H, Bin Nasir KH, Yoshida K et al (2006) SuperSAGE array: the direct use of 26-base-pair transcript tags in oligonucleotide arrays. Nat Methods 3(6):469–474

    Article  CAS  PubMed  Google Scholar 

  • Orchard S, Salwinski L, Kerrien S et al (2007) The minimum information required for reporting a molecular interaction experiment (MIMIx). Nat Biotechnol 25(8):894–898

    Article  CAS  PubMed  Google Scholar 

  • Raamsdonk LM, Teusink B, Broadhurst D et al (2001) A functional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat Biotechnol 19(1):45–50

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Venkatesan K, Hao T et al (2005) Towards a proteome-scale map of the human protein – protein interaction network. Nature 437(7062):1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Quackenbush J (2001) Computational analysis of microarray data. Nat Rev Genet 2:418–427

    Article  CAS  PubMed  Google Scholar 

  • Slonim DK (2002) From patterns to pathways: gene expression data analysis comes of age. Nat Genet Suppl 32:502–508

    Article  CAS  Google Scholar 

  • Stuart LM, Boulais J, Charriere GM (2007) A systems biology analysis of the Drosophila phagosome. Nature 445(7123):95–101

    Article  CAS  PubMed  Google Scholar 

  • Teusink B, Passarge J, Reijenga CA et al (2000) Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur J Biochem 267(17):5313–5329

    Article  CAS  PubMed  Google Scholar 

  • Vanhecke D, Janitz M (2005) Functional genomics using high-throughput RNA interference. Drug Discov Today 10(3):205–212

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Jewison T, Guo AC et al (2013) HMDB 3.0 – the human metabolome database in 2013. Nucleic Acids Res 41(Database issue):D801–D807

    CAS  PubMed  Google Scholar 

  • Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A et al (2001) Global analysis of protein activities using proteome chips. Science 293:2101–2105

    Article  CAS  PubMed  Google Scholar 

Internetquellen

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Selzer, P.M., Marhöfer, R.J., Koch, O. (2018). Die funktionelle Analyse von Genomen. In: Angewandte Bioinformatik. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54135-7_6

Download citation

Publish with us

Policies and ethics