Skip to main content

New Strategies for Muscular Repair and Regeneration

  • Chapter
  • First Online:
Muscle and Tendon Injuries

Abstract

Skeletal muscle injuries are common causes of severe long-term pain and physical disability, accounting for up to 55% of all sports injuries. The phases of the healing processes after direct or indirect muscle injury are complex but clearly defined and include well-coordinated steps: degeneration, inflammation, regeneration, and fibrosis. Despite this frequent occurrence and the presence of a body of data on the pathophysiology of muscle injuries, none of the current treatment strategies have been shown to be really effective in strictly controlled trials. Various strategies, including standard protocol as PRICE/POLICE, fisiochinesiterapic treatment, kinesiotaping, mechanical stimulation, growth factor injections, transplantation of muscle stem cells in combination or not with biological scaffolds, and anti-fibrotic therapies, may become therapeutic alternatives to improve functional muscle recovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abat F, Valles SL, Gelber PE, Polidori F, Jorda A, Garcia-Herreros S, Monllau JC, Sanchez-Ibanez JM (2015) An experimental study of muscular injury repair in a mouse model of notexin-induced lesion with EPI(R) technique. BMC Sports Sci Med Rehabil 7:7. doi:10.1186/s13102-015-0002-0

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson JE (2016) Hepatocyte growth factor and satellite cell activation. Adv Exp Med Biol 900:1–25. doi:10.1007/978-3-319-27511-6_1

    Article  PubMed  Google Scholar 

  • Beiner JM, Jokl P, Cholewicki J, Panjabi MM (1999) The effect of anabolic steroids and corticosteroids on healing of muscle contusion injury. Am J Sports Med 27(1):2–9

    CAS  PubMed  Google Scholar 

  • Bleakley C M, Glasgow P, MacAuley DC (2012) PRICE needs updating, should we call the POLICE? Br J Sports Med 46:220–221. doi:10.1136/bjsports-2011-090297. Originally published online September 7, 2011

  • Boldrin L, Elvassore N, Malerba A, Flaibani M, Cimetta E, Piccoli M, Baroni MD, Gazzola MV, Messina C, Gamba P, Vitiello L, de Coppi P (2007) Satellite cells delivered by micro-patterned scaffolds: a new strategy for cell transplantation in muscle diseases. Tissue Eng 13(2):253–262

    Article  CAS  PubMed  Google Scholar 

  • Borselli C, Storrie H, Benesch-Lee F, Shvartsman D, Cezar C, Lichtman JW, Vandenburgh HH, Mooney DJ (2010) Functional muscle regeneration with combined delivery of angiogenesis and myogenesis factors. Proc Natl Acad Sci U S A 107(8):3287–3292. doi:10.1073/pnas.0903875106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borselli C, Cezar CA, Shvartsman D, Vandenburgh HH, Mooney DJ (2011) The role of multifunctional delivery scaffold in the ability of cultured myoblasts to promote muscle regeneration. Biomaterials 32(34):8905–8914. doi:10.1016/j.biomaterials.2011.08.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cezar CA, Roche ET, Vandenburgh HH, Duda GN, Walsh CJ, Mooney DJ (2016) Biologic-free mechanically induced muscle regeneration. Proc Natl Acad Sci U S A 113(6):1534–1539. doi:10.1073/pnas.1517517113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan YS, Li Y, Foster W, Horaguchi T, Somogyi G, Fu FH, Huard J (2003) Antifibrotic effects of suramin in injured skeletal muscle after laceration. J Appl Physiol 95(2):771–780. doi:10.1152/japplphysiol.00915.2002

    Article  CAS  PubMed  Google Scholar 

  • Cianforlini M, Mattioli-Belmonte M, Manzotti S, Chiurazzi E, Piani M, Orlando F, Provinciali M, Gigante A (2015) Effect of platelet rich plasma concentration on skeletal muscle regeneration: an experimental study. J Biol Regul Homeost Agents 29(4 Suppl):47–55

    CAS  PubMed  Google Scholar 

  • Collins CA (2006) Satellite cell self-renewal. Curr Opin Pharmacol 6(3):301–306

    Article  CAS  PubMed  Google Scholar 

  • Darby IA, Zakuan N, Billet F, Desmouliere A (2016) The myofibroblast, a key cell in normal and pathological tissue repair. Cell Mol Life Sci 73(6):1145–1157. doi:10.1007/s00018-015-2110-0

    Article  CAS  PubMed  Google Scholar 

  • Deasy BM, Feduska JM, Payne TR, Li Y, Ambrosio F, Huard J (2009) Effect of VEGF on the regenerative capacity of muscle stem cells in dystrophic skeletal muscle. Mol Ther 17(10):1788–1798. doi:10.1038/mt.2009.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desmouliere A, Gabbiani G (1995) Myofibroblast differentiation during fibrosis. Exp Nephrol 3(2):134–139

    CAS  PubMed  Google Scholar 

  • Dhawan J, Rando TA (2005) Stem cells in postnatal myogenesis: molecular mechanisms of satellite cell quiescence, activation and replenishment. Trends Cell Biol 15(12):666–673

    Article  CAS  PubMed  Google Scholar 

  • Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA (2015) Satellite cells and skeletal muscle regeneration. Compr Physiol 5(3):1027–1059. doi:10.1002/cphy.c140068

    Article  PubMed  Google Scholar 

  • Engebretsen L, Steffen K, Alsousou J, Anitua E, Bachl N, Devilee R, Everts P, Hamilton B, Huard J, Jenoure P, Kelberine F, Kon E, Maffulli N, Matheson G, Mei-Dan O, Menetrey J, Philippon M, Randelli P, Schamasch P, Schwellnus M, Vernec A, Verrall G (2010) IOC consensus paper on the use of platelet-rich plasma in sports medicine. Br J Sports Med 44(15):1072–1081. doi:10.1136/bjsm.2010.079822

    Article  PubMed  Google Scholar 

  • Engert JC, Berglund EB, Rosenthal N (1996) Proliferation precedes differentiation in IGF-I-stimulated myogenesis. J Cell Biol 135(2):431–440

    Article  CAS  PubMed  Google Scholar 

  • Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689. doi:10.1016/j.cell.2006.06.044

    Article  CAS  PubMed  Google Scholar 

  • Foster W, Li Y, Usas A, Somogyi G, Huard J (2003) Gamma interferon as an antifibrosis agent in skeletal muscle. J Orthop Res 21(5):798–804

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Badlani N, Usas A, Riano F, Fu F, Huard J (2001) The use of an antifibrosis agent to improve muscle recovery after laceration. Am J Sports Med 29(4):394–402

    CAS  PubMed  Google Scholar 

  • Gigante A, Del Torto M, Manzotti S et al (2012) Platelet rich fibrin matrix effects on skeletal muscle lesions: an experimental study. J Biol Regul Homeost Agents 26:475–484

    CAS  PubMed  Google Scholar 

  • Gigante A, Cianforlini M, Manzotti S, Ulisse S (2014) The effects of growth factors on skeletal muscle lesions. Joints 1(4):180–186

    PubMed  PubMed Central  Google Scholar 

  • Gilbert PM, Havenstrite KL, Magnusson KE, Sacco A, Leonardi NA, Kraft P, Nguyen NK, Thrun S, Lutolf MP, Blau HM (2010) Substrate elasticity regulates skeletal muscle stem cell self-renewal in culture. Science 329(5995):1078–1081. doi:10.1126/science.1191035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hamid MS, Yusof A, Ali MRM (2014) Platelet-rich plasma (PRP) for acute muscle injury: a systematic review. PLoS One 9(2):e90538. doi:10.1371/journal.pone.0090538

    Article  PubMed  Google Scholar 

  • Hammond JW, Hinton RY, Curl LA, Muriel JM, Lovering RM (2009) Use of autologous platelet-rich plasma to treat muscle strain injuries. Am J Sports Med 37(6):1135–1142. doi:10.1177/0363546508330974

    Article  PubMed  PubMed Central  Google Scholar 

  • Huard J, Li Y, Fu FH (2002) Muscle injuries and repair: current trends in research. J Bone Joint Surg Am 84-A(5):822–832

    Article  PubMed  Google Scholar 

  • Hurme T, Kalimo H (1992) Activation of myogenic precursor cells after muscle injury. Med Sci Sports Exerc 24(2):197–205

    Article  CAS  PubMed  Google Scholar 

  • Hwang OK, Park JK, Lee EJ, Lee EM, Kim AY, Jeong KS (2016) Therapeutic effect of losartan, an angiotensin II type 1 receptor antagonist, on CCl4-induced skeletal muscle injury. Int J Mol Sci 17(2):227

    Article  PubMed  PubMed Central  Google Scholar 

  • Järvinen TA, Järvinen TL, Kääriäinen M et al (2007) Muscle injuries: optimising recovery. Best Pract Res Clin Rheumatol 21(2):317–331. pmid:17512485

  • Jeon OH, Elisseeff J (2016) Orthopedic tissue regeneration: cells, scaffolds, and small molecules. Drug Deliv Transl Res 6(2):105–120. doi:10.1007/s13346-015-0266-7

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi M, Ota S, Terada S, Kawakami Y, Otsuka T, Fu FH, Huard J (2016) The combined use of losartan and muscle-derived stem cells significantly improves the functional recovery of muscle in a young mouse model of contusion injuries. Am J Sports Med 44(12):3252–3261. doi:10.1177/0363546516656823

    Article  PubMed  Google Scholar 

  • Law PK, Bertorini TE, Goodwin TG, Chen M, Fang QW, Li HJ, Kirby DS, Florendo JA, Herrod HG, Golden GS (1990) Dystrophin production induced by myoblast transfer therapy in Duchenne muscular dystrophy. Lancet 336(8707):114–115

    Article  CAS  PubMed  Google Scholar 

  • Lee C, Fukushima K, Usas A, Xin L, Pelinkovic D, Martinek V, Huard J (2000) Biological intervention based on cell and gene therapy to improve muscle healing after laceration. J Musculoskelet Res 4(4):256–277

    Article  Google Scholar 

  • Lehto M, Sims TJ, Bailey AJ (1985) Skeletal muscle injury–molecular changes in the collagen during healing. Res Exp Med 185(2):95–106

    Article  CAS  Google Scholar 

  • Li Y, Li J, Zhu J, Sun B, Branca M, Tang Y, Foster W, Xiao X, Huard J (2007) Decorin gene transfer promotes muscle cell differentiation and muscle regeneration. Mol Ther 15(9):1616–1622. doi:10.1038/sj.mt.6300250

    Article  CAS  PubMed  Google Scholar 

  • Li H, Hicks JJ, Wang L, Oyster N, Philippon MJ, Hurwitz S et al (2016) Customized platelet-rich plasma with transforming growth factor β1 neutralization antibody to reduce fibrosis in skeletal muscle. Biomaterials 87:147–156

    Article  CAS  PubMed  Google Scholar 

  • Lipton BH, Schultz E (1979) Developmental fate of skeletal muscle satellite cells. Science 205(4412):1292–1294

    Article  CAS  PubMed  Google Scholar 

  • Mann CJ, Perdiguero E, Kharraz Y, Aguilar S, Pessina P, Serrano AL, Munoz-Canoves P (2011) Aberrant repair and fibrosis development in skeletal muscle. Skelet Muscle 1(1):21. doi:10.1186/2044-5040-1-21

    Article  PubMed  PubMed Central  Google Scholar 

  • McLennan IS (1996) Degenerating and regenerating skeletal muscles contain several subpopulations of macrophages with distinct spatial and temporal distributions. J Anat 188(Pt 1):17–28

    PubMed  PubMed Central  Google Scholar 

  • Mendell JR, Kissel JT, Amato AA, King W, Signore L, Prior TW, Sahenk Z, Benson S, McAndrew PE, Rice R, Nagaraja H, Stephens R, Lantry L, Morris GE, Burghes AH (1995) Myoblast transfer in the treatment of Duchenne’s muscular dystrophy. N Engl J Med 333(13):832–838

    Article  CAS  PubMed  Google Scholar 

  • Menetrey J, Kasemkijwattana C, Day CS, Bosch P, Vogt M, Fu FH, Moreland MS, Huard J (2000) Growth factors improve muscle healing in vivo. J Bone Joint Surg [Br] 82-B:131–137. pmid:10697329

  • Meng J, Chun S, Asfahani R, Lochmuller H, Muntoni F, Morgan J (2014) Human skeletal muscle-derived CD133(+) cells form functional satellite cells after intramuscular transplantation in immunodeficient host mice. Mol Ther 22(5):1008–1017. doi:10.1038/mt.2014.26

    Article  CAS  PubMed Central  Google Scholar 

  • Miller KJ, Thaloor D, Matteson S, Pavlath GK (2000) Hepatocyte growth factor affects satellite cell activation and differentiation in regenerating skeletal muscle. Am J Physiol Cell Physiol 278(1):C174–C181

    CAS  PubMed  Google Scholar 

  • Munoz-Canoves P, Serrano AL (2015) Macrophages decide between regeneration and fibrosis in muscle. Trends Endocrinol Metab 26(9):449–450. doi:10.1016/j.tem.2015.07.005

    Article  CAS  PubMed  Google Scholar 

  • Oak NR, Gumucio JP, Flood MD, Saripalli AL, Davis ME, Harning JA et al (2014) Inhibition of 5-LOX, COX-1, and COX-2 increases tendon healing and reduces muscle fibrosis and lipid accumulation after rotator cuff repair. Am J Sports Med 42(12):2860–2868

    Article  PubMed  PubMed Central  Google Scholar 

  • Park JK, Ki MR, Lee EM, Kim AY, You SY, Han SY, Lee EJ, Hong IH, Kwon SH, Kim SJ, Rando TA, Jeong KS (2012) Losartan improves adipose tissue-derived stem cell niche by inhibiting transforming growth factor-beta and fibrosis in skeletal muscle injury. Cell Transplant 21(11):2407–2424. doi:10.3727/096368912X637055

    Article  PubMed  Google Scholar 

  • Partridge TA, Morgan JE, Coulton GR, Hoffman EP, Kunkel LM (1989) Conversion of mdx myofibres from dystrophin-negative to -positive by injection of normal myoblasts. Nature 337(6203):176–179

    Article  CAS  PubMed  Google Scholar 

  • Proto JD, Tang Y, Lu A, Chen WC, Stahl E, Poddar M, Beckman SA, Robbins PD, Nidernhofer LJ, Imbrogno K, Hannigan T, Mars WM, Wang B, Huard J (2015) NF-kappaB inhibition reveals a novel role for HGF during skeletal muscle repair. Cell Death Dis 6:e1730. doi:10.1038/cddis.2015.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Relaix F, Zammit PS (2012) Satellite cells are essential for skeletal muscle regeneration: the cell on the edge returns centre stage. Development 139(16):2845–2856. doi:10.1242/dev.069088

    Article  CAS  PubMed  Google Scholar 

  • Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL, Dutch Hamstring Injection Therapy Study I (2014) Platelet-rich plasma injections in acute muscle injury. N Engl J Med 370(26):2546–2547. doi:10.1056/NEJMc1402340

    Article  Google Scholar 

  • Reurink G, Goudswaard GJ, Moen MH, Weir A, Verhaar JA, Bierma-Zeinstra SM, Maas M, Tol JL, Dutch HITsI (2015) Rationale, secondary outcome scores and 1-year follow-up of a randomised trial of platelet-rich plasma injections in acute hamstring muscle injury: the Dutch Hamstring Injection Therapy study. Br J Sports Med 49(18):1206–1212. doi:10.1136/bjsports-2014-094250

    Article  Google Scholar 

  • Rocheteau P, Vinet M, Chretien F (2015) Dormancy and quiescence of skeletal muscle stem cells. Results Probl Cell Differ 56:215–235. doi:10.1007/978-3-662-44608-9_10

    Article  PubMed  Google Scholar 

  • Sallay PI, Friedman RL, Coogan PG, Garrett WE (1996) Hamstring muscle injuries among water skiers: functional outcome and prevention. Am J Sports Med 24:130–136

    Article  CAS  PubMed  Google Scholar 

  • Sambasivan R, Yao R, Kissenpfennig A, Van Wittenberghe L, Paldi A, Gayraud-Morel B, Guenou H, Malissen B, Tajbakhsh S, Galy A (2011) Pax7-expressing satellite cells are indispensable for adult skeletal muscle regeneration. Development 138(17):3647–3656. doi:10.1242/dev.067587

    Article  CAS  PubMed  Google Scholar 

  • Sampaolesi M, Blot S, D’Antona G, Granger N, Tonlorenzi R, Innocenzi A, Mognol P, Thibaud JL, Galvez BG, Barthelemy I, Perani L, Mantero S, Guttinger M, Pansarasa O, Rinaldi C, De Angelis MGC, Torrente Y, Bordignon C, Bottinelli R, Cossu G (2006) Mesoangioblast stem cells ameliorate muscle function in dystrophic dogs. Nature 444(7119):574–579

    Article  CAS  PubMed  Google Scholar 

  • Schiaffino S, Mammucari C (2011) Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: insights from genetic models. Skelet Muscle 1(1):4. doi:10.1186/2044-5040-1-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sheehan SM, Tatsumi R, Temm-Grove CJ, Allen RE (2000) HGF is an autocrine growth factor for skeletal muscle satellite cells in vitro. Muscle Nerve 23(2):239–245

    Article  CAS  PubMed  Google Scholar 

  • Sicari BM, Rubin JP, Dearth CL, Wolf MT, Ambrosio F, Boninger M et al (2014) An acellular biologic scaffold promotes skeletal muscle formation in mice and humans with volumetric muscle loss. Sci Transl Med 6(234):234ra58–234ra58

    Article  PubMed  Google Scholar 

  • Skuk D, Goulet M, Roy B, Piette V, Cote CH, Chapdelaine P, Hogrel JY, Paradis M, Bouchard JP, Sylvain M, Lachance JG, Tremblay JP (2007) First test of a “high-density injection” protocol for myogenic cell transplantation throughout large volumes of muscles in a Duchenne muscular dystrophy patient: eighteen months follow-up. Neuromuscul Disord 17(1):38–46. doi:10.1016/j.nmd.2006.10.003

    Article  PubMed  Google Scholar 

  • Taniguti AP, Pertille A, Matsumura CY, Santo Neto H, Marques MJ (2011) Prevention of muscle fibrosis and myonecrosis in mdx mice by suramin, a TGF-beta1 blocker. Muscle Nerve 43(1):82–87. doi:10.1002/mus.21869

    Article  CAS  PubMed  Google Scholar 

  • Tedesco FS, Cossu G (2012) Stem cell therapies for muscle disorders. Curr Opin Neurol 25(5):597–603. doi:10.1097/WCO.0b013e328357f288

    Article  PubMed  Google Scholar 

  • Terada S, Ota S, Kobayashi M, Kobayashi T, Mifune Y, Takayama K, Witt M, Vadala G, Oyster N, Otsuka T, Fu FH, Huard J (2013) Use of an antifibrotic agent improves the effect of platelet-rich plasma on muscle healing after injury. J Bone Joint Surg Am 95(11):980–988. doi:10.2106/JBJS.L.00266

    Article  PubMed  Google Scholar 

  • Tidball JG (1995) Inflammatory cell response to acute muscle injury. Med Sci Sports Exerc 27(7):1022–1032

    Article  CAS  PubMed  Google Scholar 

  • Toumi H, Best TM (2003) The inflammatory response: friend or enemy for muscle injury? Br J Sports Med 37(4):284–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser LC, Arnoczky SP, Caballero O et al (2010) Platelet-rich fibrin constructs elute higher concentrations of transforming growth factor-β1 and increase tendon cell proliferation over time when compared to blood clots: a comparative in vitro analysis. Vet Surg 39:811–817

    Article  PubMed  Google Scholar 

  • Wolf MT, Daly KA, Reing JE, Badylak SF (2012) Biologic scaffold composed of skeletal muscle extracellular matrix. Biomaterials 33(10):2916–2925

    Article  CAS  PubMed  Google Scholar 

  • Würgler-Hauri CC et al (2007) Temporal expression of 8 growth factors in tendon-to-bone healing in a rat supraspinatus model. J Shoulder Elb Surg 16(5):S198–S203

    Article  Google Scholar 

  • Zhao W, Lu H, Wang X, Ransohoff RM, Zhou L (2016) CX3CR1 deficiency delays acute skeletal muscle injury repair by impairing macrophage functions. FASEB J 30(1):380–393. doi:10.1096/fj.14-270090

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Gigante .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 ISAKOS

About this chapter

Cite this chapter

Cianforlini, M., Coppa, V., Grassi, M., Gigante, A. (2017). New Strategies for Muscular Repair and Regeneration. In: Canata, G., d'Hooghe, P., Hunt, K. (eds) Muscle and Tendon Injuries. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54184-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54184-5_14

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54183-8

  • Online ISBN: 978-3-662-54184-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics