Skip to main content

Niederschlag, Wasserkreislauf, Klimazonen

  • Chapter
  • First Online:
Physik unserer Umwelt: Die Atmosphäre
  • 8205 Accesses

Zusammenfassung

In diesem Kapitel wird der atmosphärische Wasserhaushalt und die damit verbundenen klimatischen Aspekte behandelt. Neben den globalen Aspekten werden auch mikrophysikalische Mechanismen wie Kondensation und Niederschlagsbildung sowie die Auswaschwirksamkeit des Niederschlags für atmosphärische Spurenstoffe und die Hydrometeorologie der schweren Wasserisotope HDO und H218O besprochen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  • Battan LJ, Reitan CH (1957) Artificial stimulation of rain. Pergamon, New York

    Google Scholar 

  • Baumgartner A, Reichel E (1975) Die Weltwasserbilanz. Oldenbourg, München

    Google Scholar 

  • Beard KV (1976) Terminal velocity and shape of cloud and precipitation drops aloft. J Atmos Sci 33:851–864

    Article  Google Scholar 

  • Beard KV, Grover SN (1974) Numerical collision efficiencies for small raindrops colliding with micron size particles. J Atmos Sci 31:543–550

    Article  Google Scholar 

  • Beard KV, Ochs HT (1984) Collection and coalescence efficiencies for accretion. J Geophys Res 89:7165–7169

    Article  Google Scholar 

  • Blüthgen J, Weischet W (1980) Allgemeine Klimageographie. De Gruyter, Berlin

    Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Article  CAS  Google Scholar 

  • Dansgaard W (1964) Stabile isotopes in precipitation. Tellus 16:436–468

    Article  Google Scholar 

  • Dansgaard W, Johnsen SJ, Clausen HB, Gundestrup N (1973) Stable isotope glaciology. Medd Grnl 197:1–53

    Google Scholar 

  • Diem M (1968) Zur Struktur der Niederschläge, III. Regen in der arktischen, gemäßigten und tropischen Zone. Arch Meteor Geophys Bioklimatol B 16:347–390

    Google Scholar 

  • Engelmann RJ (1970) Scavenging prediction using ratios of concentrations in air and precipitation. In: Engelmann RJ, Slinn WGN (Hrsg) Precipitation Scavenging. AEC Symp Ser 22. U. S. Atomic Energy Commission, Oak Ridge, S 475–485

    Google Scholar 

  • Flohn H (1974) Vom Regenmacher zum Wettersatelliten. Kindler, Frankfurt/Main, als Taschenbuch: Fischer, Nr. 6252, Stuttgart

    Google Scholar 

  • Georgii HW (1982) Global distribution of the acidity in precipitation. In: Georgii HW, Pankrath J (Hrsg) Deposition of atmospheric pollutants. Reidel, Dordrecht, S 55–66

    Chapter  Google Scholar 

  • Goldsmith P, Delafield HJ, Cox LC (1961) Measurement of the deposition of submicron particles in the gradient of vapour pressure and of the efficiency of this mechanism in the capture of particulate matter by cloud droplets in nature. Geofis Pura Appl 50:278–280

    Article  Google Scholar 

  • Gunn R, Kinzer GD (1949) The terminal velocity of fall for water drops in stagnant air. J Meteorol 6:243–248

    Google Scholar 

  • Haude W (1954) Zur praktischen Bestimmung der aktuellen und potentiellen Evaporation und Evapotranspiration. Mitt Dtsch Wetterdienst 8:3–11

    Google Scholar 

  • Heikes BG, Thompson AM (1983) Effects of heterogeneous processes in NO3, HONO, and HNO3 chemistry in the troposphere. J Geophys Res 88:10883–10895

    Google Scholar 

  • Hidy GM, Brock JR (1970) The dynamics of aerocolloidal systems. Pergamon, Oxford

    Google Scholar 

  • Hinzpeter M (1958) The influence of meteorological parameters on the propagation of radioactive fission products in the biosphere. Proc II Int Conf Peaceful Uses of Atomic Energy, Vol. 18. United Nations, New York, S 284

    Google Scholar 

  • Jacob H, Sonntag C (1991) An 8-year record of the seasonal variation of 2H and 18O in atmospheric water vapour and precipitation at Heidelberg, Germany. Tellus 43B: 291–300

    Google Scholar 

  • Johnsen SJ, Dansgaard W, Clausen HB, Langway CC (1972) Oxygen isotope profiles through the Antarctic and Greenland ice sheets. Nature (London) 235:429–434

    Article  CAS  Google Scholar 

  • Junge CE (1963) Air chemistry and radioactivity. Academic Press, New York

    Google Scholar 

  • Junge CE (1975) Processes responsible for the trace content in precipitation. Vortrag XVI. General Assembly of I.U.G.G., Grenoble

    Google Scholar 

  • Klett JD, Davis MH (1973) Theoretical collision efficiencies of cloud droplets at small reynolds numbers. J Atmos Sci 30:107–117

    Article  Google Scholar 

  • Korzun VI, Sokolov AA, Budyko MI, Voskresensky KP, Kalinin GP, Konoplyantsev AA, Korotkevich ES & L’vovitch MI (Hrsg) (1974) Atlas of world water balance. USSR National Committee for the International Hydrological Decade. English translation. The UNESCO Press, Paris

    Google Scholar 

  • Majoube M (1971) Fractionnement en oxygène 18 et en deutrium entre l’eau et sa vapeur. J Chim Phys 10:1423–1436

    Article  CAS  Google Scholar 

  • Mason BJ (1971) The physics of clouds. Clarendon, Oxford

    Google Scholar 

  • McMahon TA, Denison PJ (1979) Empirical atmospheric deposition parameters – a survey. Atmos Environ 13:571–585

    Article  CAS  Google Scholar 

  • Merlivat L (1978) Molecular diffusivities of H216O, HD16O, and H218O in gases. J Chem Phys 69:2864–2871

    Google Scholar 

  • Möller F (1973) Einführung in die Meteorologie, 2 Bd. BI-Hochschultaschenbücher Nr.276 u. Nr.288. Bibliogr Inst, Mannheim

    Google Scholar 

  • Peirson DH, Cambray RS (1965) Fission product fallout from the nuclear explosions of 1961 and 1962. Nature (London) 205:433–440

    Article  CAS  Google Scholar 

  • Peirson DH, Cawse PA, Salmon L, Cambray RS (1973) Trace elements in the atmospheric environment. Nature (London) 241:252–256

    Article  CAS  Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc Roy Soc A 193:120–145

    Article  CAS  Google Scholar 

  • Perseke C (1982) Composition of acid rain in the Federal Republic of Germany – Spatial and temporal variations during the period 1979–1981. In: Georgii HW, Pankrath J (Hrsg) Deposition of atmospheric pollutants. Reidel, Dordrecht, S 77–86

    Chapter  Google Scholar 

  • Pruppacher HR, Klett JD (1978) Microphysics of atmospheric clouds and precipitation. Reidel, Dordrecht

    Google Scholar 

  • Richards LW (1983) Comments on the oxidation of NO2 to nitrate – day and night. Atmos Environ 17:397–402

    Article  CAS  Google Scholar 

  • Rogers RR, Yau MK (1989) A short course in cloud physics. Pergamon, Oxford

    Google Scholar 

  • Schwartz SE (1986) Mass-transport considerations pertinent to aqueous phase reaction of gases in liquid-water clouds. In: Jaeschke W (Hrsg) Chemistry of multiphase systems, NATO ASI Ser, Vol. G6, Springer, Berlin Heidelberg New York Tokyo, pp 415–471

    Chapter  Google Scholar 

  • Sellers WD (1965) Physical Climatology. University Chicago Press, Chicago

    Google Scholar 

  • Sonntag C, Klitzsch E, Löhnert EP, El Shazly EM, Münnich KO, Junghans C, Thorweihe U, Weistroffer K, Swailem FM (1979) Paleoclimatic information from deuterium and oxygen-18 in C-14 dated North Saharian groundwaters. Groundwater formation in the past. In: Isotope hydrology 1978, Bd 2. IAEA, Vienna, S 569–581

    Google Scholar 

  • Sonntag C, Münnich KO, Jacob H, Rozanski K (1983) Variations of deuterium and oxygen-18 in continental precipitation and groundwater, and their causes. In: Street-Perrott LA, Beran M, Ratcliffe R (Hrsg) Variations in the global water budget. Reidel, Dordrecht, S 107–124

    Chapter  Google Scholar 

  • Stewart MK, Friedman I (1975) Deuterium fractionation between aqueous salt solution and water vapor. J Geophys Res 80:3812–3818

    Article  CAS  Google Scholar 

  • Sverdrup HU (1936) Das maritime Verdunstungsproblem. Ann Hydrogr Marit Meteorol 32:41–47

    Google Scholar 

  • Thornthwaite CW, Holzman B (1942) Measurements of evaporation from land and water surfaces. US Dept Agric Tech Bull 817

    Google Scholar 

  • Thornthwaite CW, Mather JR (1955) The water balance. Inst Technol Publ Climat 8:1–86

    Google Scholar 

  • van der Westhuizen M (1969) Radioactive nuclear bomb fallout – a relationship between deposition, air concentration and rainfall. Atmos Environ 3:241

    Google Scholar 

  • Wang PK, Grover SN, Pruppacher HR (1978) On the effect of electric charges on the scavenging of aerosol particles by clouds and small raindrops. J Atmos Sci 35:1735–1743

    Article  Google Scholar 

  • Yurtsever Y, Gat JR (1981) Atmospheric waters. In: Gat JR, Gonfiantini R (Hrsg) Stable Isotope Hydrology. Tech Rep Ser 210, IAEA, Wien, S 103–142

    Google Scholar 

  • Zeldovich J (1942) Theory of the formation of a new phase. Zh Eksp Teor Fiz 12:525

    Google Scholar 

  • Zimin AG (1962) Mechanisms of capture and precipitation of atmospheric contaminants by clouds and precipitation. In: Karol IL, Malakhov SG (Hrsg) Problems in nuclear meteorology. Gosatomizdat, Moskau, S 139–182

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this chapter

Cite this chapter

Roedel, W., Wagner, T. (2017). Niederschlag, Wasserkreislauf, Klimazonen. In: Physik unserer Umwelt: Die Atmosphäre. Springer Spektrum, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54258-3_5

Download citation

Publish with us

Policies and ethics