Skip to main content

Physikalische Grundlagen gasgetragener partikulärer Kontaminationen

  • Chapter
  • First Online:
Reinraumtechnik

Part of the book series: VDI-Buch ((VDI-BUCH))

  • 9998 Accesses

Zusammenfassung

Viele der heutigen Produkte sind während ihrer Herstellung sehr empfindlich gegenüber Schad- bzw. Fremdstoffen in ihrer Umgebung. Diese Empfindlichkeit war und ist der Auslöser für die Entwicklung und die stetige Weiterentwicklung der sogenannten Reinen Technologien. Die Zielsetzung der Reinen Technologien ist es, die Schad- bzw. Fremdstoffe in der Reichweite der Produkte auf einen vorgegebenen Grenzwert zu reduzieren. Um diese Zielsetzung zu erreichen, sind die einzelnen Stoffströme sowohl im Reinraum als auch in den entsprechenden geschlossenen Prozesssystemen zu betrachten.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Literatur

  1. Mittal, K.L. (Hrsg.): Particles on Surfaces 1: Detection, Adhesion, and Removal. Plenum, New York (1988)

    Google Scholar 

  2. Mittal, K.L. (Hrsg.): Particles on Surfaces 2: Detection, Adhesion, and Removal. Plenum, New York (1990)

    Book  Google Scholar 

  3. Yook, S.J., Fissan, H., Asbach, C., Kim, J.H., Dutcher, D.D., Yan, P.Y., Pui, D.Y.H.: Experimental investigations on particle contamination of masks without protective pellicles during vibration or shipping of mask carriers. IEEE Trans. Semicond. Manuf. 20, 578–584 (2007)

    Article  Google Scholar 

  4. Kim, J.H., Asbach, C., Yook, S.J., Fissan, H., Orvek, K.J., Ramamoorthy, A, Yan, P.Y., Pui, D.Y.H.: Protection schemes for critical surface in vacuum environments. J. Vac. Sci. Technol. A. 23, 1319–1324 (2005a)

    Article  Google Scholar 

  5. Springer, G.S.: Homogeneous nucleation. Adv. Heat Transf. 14, 281–346 (1978)

    Article  Google Scholar 

  6. Fissan, H.: Zwischen Killerpartikeln Mol. Kontam. Reinraumtech. 1, 38–42 (2003)

    Google Scholar 

  7. Periasamy, R., Clayton, A.C., Donovan, R.P., Ensor, D.S., Opiolka, S., Fissan, H.: Measurement of particle deposition on wafers in vacuum chambers. J. Aerosol Sci. 22, S797–S800 (1991)

    Article  Google Scholar 

  8. Opiolka, S., Schmidt, F., Fissan, H.: Combined effects of electrophoresis and thermophoresis on particle deposition onto flat surfaces. J. Aerosol Sci. 25, 665–671 (1994)

    Article  Google Scholar 

  9. Asbach, C., Fissan, H., Kim, J.H., Yook, S.J., Pui, D.Y.H.: Technical note: concepts for protection of EUVL masks from particle contamination. J. Nanopart. Res. 5, 705–708 (2006)

    Article  Google Scholar 

  10. Asbach, C., Pui, D.Y.H., Kim, J.H., Yook, S.J., Fissan, H.: Modeling of protection schemes for critical surfaces under low pressure conditions: comparison between analytical and numerical approach. J. Vac. Sci. Technol. B. 23, 2419–2426 (2005a)

    Article  Google Scholar 

  11. Cunningham, E.: On the velocity of steady fall of spherical particles through fluid medium. Proc. R. Soc. Ser. A. 83, 357–365 (1910)

    Article  Google Scholar 

  12. Millikan, R.A.: The isolation of an ion, a precision measurement of its charge, and the correction of Stokes’s law. Science. 32, 436–448 (1910)

    Article  Google Scholar 

  13. Allen, M.D., Raabe, O.G.: Slip correction measurements of spherical solid aerosol particles in an improved Millikan apparatus. Aerosol Sci. Technol. 4, 269–286 (1985)

    Article  Google Scholar 

  14. Kim, J.H., Mulholland, G.W., Kuckuck, S.R., Pui, D.Y.H.: Slip correction measurements of certified PSL nanoparticles using a nanometer differential mobility analyzer (nano-DMA) for Knudsen number from 0.5 to 83. J. Res. Natl. Inst. Stand. Technol. 110, 31–54 (2005b)

    Article  Google Scholar 

  15. Einstein, A.: Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. Phys. 17, 549–560 (1905)

    Article  Google Scholar 

  16. Asbach, C., Fissan, H., Kuhlbuch, T.A.J., Wang, J., Pui, D.Y.H.: Model for the combination of diffusional and inertial particle deposition on inverse surfaces at low pressure. Appl. Phys. Lett. 93, 054104 (2008a)

    Article  Google Scholar 

  17. Yook, S.J., Ahn, K.H.: Gaussian diffusion sphere model to predict mass transfer due to diffusional particle deposition on a flat surface in laminar flow regime. Appl. Phys. Lett. 94, 191909 (2009)

    Google Scholar 

  18. Asbach, C., Kim, J.H., Yook, S.J., Pui, D.Y.H., Fissan, H.: Analytical modeling of particle stopping distance at low pressure to evaluate protection schemes for extreme ultraviolet lithography masks. Appl. Phys. Lett. 87, 234111 (2005b)

    Article  Google Scholar 

  19. Asbach, C., Fissan, H., Kuhlbusch, T.A.J., Wang, J., Pui, D.Y.H.: Model for the combination of diffusional and inertial particle deposition on inverse surfaces at low pressure. Appl. Phys. Lett. 93, 054104 (2008b)

    Article  Google Scholar 

  20. Engelke, T., van der Zwaag, T., Asbach, C., Fissan, H., Kim, J.H., Yook, S.J., Pui, D.Y.H.: Numerical evaluation of protection schemes for EUVL masks in carrier systems against horizontal aerosol flow. J. Electrochem. Soc. 154, H170–H176 (2007)

    Article  Google Scholar 

  21. Jung, H., Kittelson, D.B.: Characterization of aerosol surface instruments in transition regime. Aerosol Sci. Technol. 39, 902–911 (2005)

    Article  Google Scholar 

  22. Waldmann, L.: Über die Kraft eines inhomogenen Gases auf kleine suspendierte Kugeln. Z. Naturforsch. 14, 589–599 (1959)

    MATH  Google Scholar 

  23. Waldmann, L., Schmitt, K.H.: Thermophoresis and diffusiophoresis of aerosols. Aerosol Science, S. 137–162. Academic Press, London (1966)

    Google Scholar 

  24. Dedrick, D.E., Beyer, E.W., Rader, D.J., Klebanoff, L.E., Leung, A.H.: Verification studies of thermophoretic protection for extreme ultraviolet masks. J. Vac. Sci. Technol. B. 23, 307–317 (2005)

    Article  Google Scholar 

  25. Kim, J.H., Fissan, H., Asbach, C., Yook, S.J., Pui, D.Y.H., Orvek, K.J.: Investigation of thermophoretic protection with speed-controlled particles at 100, 50, and 25 mTorr. J. Vac. Sci. Technol. B. 24, 1178–1184 (2006)

    Article  Google Scholar 

  26. Gallis, M.A., Rader, D.J., Torczynski, J.R.: Thermophoresis in rarefied gases. Aerosol Sci. Technol. 36, 1099–1117 (2002)

    Article  Google Scholar 

  27. Talbot, L., Cheng, R.K., Schefer, R.W., Willis, D.R.: Thermophoresis of particles in a heated boundary layer. J. Fluid Mech. 101, 737–758 (1980)

    Article  Google Scholar 

  28. Batchelor, G.K., Shen, C.: Thermophoretic deposition in gas flowing over cold surfaces. J. Colloid Interface Sci. 107, 21–37 (1985)

    Article  Google Scholar 

  29. Asbach, C., Fissan, H., Kim, J.H., Yook, S.J.,Pui, D.Y.H.: Simple theoretic approach to estimate the effect of gravity and thermophoresis on the diffusional nanoparticle contamination. J. Vacuum Sci. Technol. B25: 47–53 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinz Fißan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fißan, H., Trampe, A., Asbach, C. (2018). Physikalische Grundlagen gasgetragener partikulärer Kontaminationen. In: Gail, L., Gommel, U. (eds) Reinraumtechnik. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54915-5_2

Download citation

Publish with us

Policies and ethics