Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 241 Accesses

Abstract

In this chapter, we compare the reactivity and stability of Pt–Fe and Pt–Ni bicomponent catalysts. The interfacial confinement effect results in the formation of monolayer-thick FeO1−X and NiO1−X nanoislands on Pt(111). The edge structures of the FeO1−X and NiO1−X nanoislands provide the active sites for O2 dissociative adsorption, and thus promote CO oxidation reaction. But the stabilities of FeO1−X/Pt(111) and NiO1−X/Pt(111) systems are different after the oxidation at 473 K with a O2 partial pressure of 1.3 × 10−6mbar. FeO1−X nanoisland is oxidized to O–Fe–O trilayer structure after oxidation, while the chemical state of NiO1−X is unchanged after same oxidative treatment. The result of model catalytic systems is well consistent with the observation of supported Pt–Fe/CB and Pt–Ni/CB catalysts. In situ XANES investigations show the chemical state of Fe is 2+ under CO oxidation with excess H2, whereas the Fe is further oxidized in O2-rich atmosphere. In contrast, the chemical state of Ni is constant under H2-rich and O2-rich CO oxidation conditions. Therefore, the CO conversion over Pt–Ni/CB catalyst increases when the concentration of O2 is increasing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tauster SJ, Fung SC, Garten RL (1978) Strong metal-support interactions—Group8 noble-metals supported on TiO2. J Am Chem Soc 100(1):170–175

    Article  CAS  Google Scholar 

  2. Tauster SJ (1987) Strong metal-support interactions. Acc Chem Res 20(11):389–394

    Article  CAS  Google Scholar 

  3. Fu Q, Wagner T (2007) Interaction of nanostructured metal overlayers with oxide surfaces. Surf Sci Rep 62(11):431–498

    Article  CAS  Google Scholar 

  4. Hensen EJM, Ligthart DAJM, van Santen RA (2011) Supported rhodium oxide nanoparticles as highly active co oxidation catalysts. Angew Chem Int Edit 50(23):5306–5310

    Article  Google Scholar 

  5. Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650

    Article  CAS  Google Scholar 

  6. Kiely CJ et al (2008) Identification of active gold nanoclusters on iron oxide supports for co oxidation. Science 321(5894):1331–1335

    Article  Google Scholar 

  7. Qiao BT et al (2011) Single-Atom catalysis of co oxidation using Pt1/FeOx. Nat Chem 3(8):634–641

    Article  CAS  Google Scholar 

  8. Sun YN et al (2008) When an encapsulating oxide layer promotes reaction on noble metals: dewetting and in situ formation of an “Inverted” FeOx/Pt catalyst. Catal Lett 126(1–2):31–35

    Article  CAS  Google Scholar 

  9. Surnev S et al (2002) Reversible dynamic behavior in catalyst systems: oscillations of structure and morphology. Phys Rev Lett 89(24):246101

    Article  CAS  Google Scholar 

  10. Fu Q et al (2010) Interface-confined ferrous centers for catalytic oxidation. Science 328(5982):1141–1144

    Article  CAS  Google Scholar 

  11. Rodriguez JA et al (2007) Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318(5857):1757–1760

    Article  CAS  Google Scholar 

  12. Qin ZH et al (2008) Encapsulation of Pt nanoparticles as a result of strong metal-support interaction with Fe3O4(111). J Phys Chem C 112(27):10209–10213

    Article  CAS  Google Scholar 

  13. Sun YN et al (2009) Monolayer iron oxide film on platinum promotes low temperature CO oxidation. J Catal 266(2):359–368

    Article  CAS  Google Scholar 

  14. Kotobuki M et al (2005) Reaction mechanism of preferential oxidation of carbon monoxide on Pt, Fe, and Pt-Fe/mordenite catalysts. J Catal 236(2):262–269

    Article  CAS  Google Scholar 

  15. Yao YX et al (2010) Growth and characterization of two-dimensional feo nanoislands supported on Pt(111). J Phys Chem C 114:17069–17079

    Article  CAS  Google Scholar 

  16. Mu R et al (2015) A comparative study in structure and reactivity of “FeOx -on-Pt” and “NiOx -on-Pt” Catalysts. Sci China Chem 58(1):162–168

    Article  CAS  Google Scholar 

  17. SchedelNiedrig T, Weiss W, Schlogl R (1995) Electronic structure of ultrathin ordered iron oxide films grown onto Pt(111). Phys Rev B 52(24):17449–17460

    Article  CAS  Google Scholar 

  18. Sun YN et al (2010) The interplay between structure and CO oxidation catalysis on metal-supported ultrathin oxide films. Angew Chem Int Edit 49(26):4418–4421

    Article  CAS  Google Scholar 

  19. Freund HJ et al (2011) CO oxidation as a prototypical reaction for heterogeneous processes. Angewandte Chem-Int Ed 50(43):10064–10094

    Article  CAS  Google Scholar 

  20. Ma T et al (2009) Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. ChemPhysChem 10(7):1013–1016

    Article  CAS  Google Scholar 

  21. Tsilimis G, Kutzner J, Zacharias H (2003) Photoemission study of clean and c(4 x 2)-2CO-Covered Pt(111) using high-harmonic radiation. Appl Phys A-mater 76(5):743–749

    Article  CAS  Google Scholar 

  22. Tsilimis G et al (2004) Observation of high-energy Pt(111) surface resonances excited by laser-generated XUV radiation. Appl Phys A-mater 78(2):177–181

    Article  CAS  Google Scholar 

  23. Bender M, Alshamery K, Freund HJ (1994) Sodium adsorption and reaction on NiO(111)/Ni(111). Langmuir 10(9):3081–3085

    Article  CAS  Google Scholar 

  24. Wruck DA, Rubin M (1993) Structure and electronic-properties of electrochromic NiO films. J Electrochem Soc 140(4):1097–1104

    Article  CAS  Google Scholar 

  25. Boudart M et al (1985) Study by synchrotron radiation of the structure of a working catalyst at high-temperatures and pressures. Science 228(4700):717–719

    Article  CAS  Google Scholar 

  26. George GN, Hedman B, Hodgson KO (1998) An edge with XAS. Nat Struct Biol 5:645–647

    Article  CAS  Google Scholar 

  27. Nishihata Y et al (2002) Self-regeneration of a Pd-Perovskite catalyst for automotive emissions control. Nature 418(6894):164–167

    Article  CAS  Google Scholar 

  28. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691

    Article  CAS  Google Scholar 

  29. Huheey JE, Keiter EA, Keiter RL (1997) Inorganic chemistry: principles of structure and reactivity, 4th edn. Prentice Hall

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rentao Mu .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Mu, R. (2017). Comparison of Pt–Fe and Pt–Ni Catalysts. In: Construction and Reactivity of Pt-Based Bi-component Catalytic Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55244-5_5

Download citation

Publish with us

Policies and ethics