Skip to main content
  • 5242 Accesses

Zusammenfassung

Je nach Zielsetzung des Trainings können unterschiedlich Höhentrainingskonzepte angewandt werden. Zur Optimierung der Ausdauerleistungsfähigkeit in der Höhe dürfte ein klassisches Höhentraining („live high – train high“) über 1 bis 2 Wochen geeignet sein, wobei hier das Training auch in Tallage absolviert werden kann („live high – train low“). Zur Steigerung der Ausdauerleistung in Tallage kann ein Höhentraining nach „live high – train low“ bei Ausdauerathleten Vorteile gegenüber einem Trainingslager in Tallage bringen. Für Sportarten mit intermittierendem Belastungsprofil stellt ein Sprintintervalltraining in Hypoxie einen interessanten Ansatz dar, der jedoch weiterer wissenschaftlicher Bearbeitung bedarf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Álvarez-Herms J, Julià-Sánchez S, Gatterer H, Blank C, Corbi F, Pagès T, Burtscher M, Viscor G (2016) Anaerobic training in hypoxia: a new approach to stimulate the rating of effort perception. Physiol Behav 163:37–42

    Article  Google Scholar 

  • Beidleman BA1, Muza SR, Fulco CS, Cymerman A, Ditzler DT, Stulz D, Staab JE, Robinson SR, Skrinar GS, Lewis SF, Sawka MN (2003) Intermittent altitude exposures improve muscular performance at 4,300 m. J Appl Physiol 95:1824–1832

    Article  Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Cymerman A, Sawka MN, Lewis SF, Skrinar GS (2008) Seven intermittent exposures to altitude improves exercise performance at 4300 m. Med Sci Sports Exerc 40:141–148

    Article  Google Scholar 

  • Beidleman BA, Muza SR, Fulco CS, Jones JE, Lammi E, Staab JE, Cymerman A (2009) Intermittent hypoxic exposure does not improve endurance performance at altitude. Med Sci Sports Exerc 41: 1317–1325

    Article  Google Scholar 

  • Bonetti DL, Hopkins WG (2009) Sea-level exercise performance following adaptation to hypoxia: a meta-analysis. Sports Med 39:107–127

    Article  Google Scholar 

  • Burtscher M (2005) Intermittierende Hypoxie: Höhenvorbereitung, Training, Therapie. Schweiz Z Sportmed Sporttraum 52:61–67

    Google Scholar 

  • Burtscher M, Faulhaber M, Flatz M, Likar R, Nachbauer W (2006) Effects of short-term acclimatization to altitude (3200 m) on aerobic and anaerobic exercise performance. Int J Sports Med 27:629–635

    Article  CAS  Google Scholar 

  • Burtscher M, Gatterer H, Faulhaber M, Gerstgrasser W, Schenk K (2010) Effects of intermittent hypoxia on running economy. Int J Sports Med 31:644–650

    Article  CAS  Google Scholar 

  • Burtscher M, Haider T, Domej W, Linser T, Gatterer H, Faulhaber M, Pocecco E, Ehrenburg I, Tkatchuk E, Koch R, Bernardi L (2009) Intermittent hypoxia increases exercise tolerance in patients at risk for or with mild COPD. Respir Physiol Neurobiol 165: 97–103

    Article  CAS  Google Scholar 

  • Burtscher M, Nachbauer W, Baumgartl P, Philadelphy M (1996) Benefits of training at moderate altitude versus sea level training in amateur runners. Eur J Appl Physiol 74:558–563

    Article  CAS  Google Scholar 

  • Burtscher M, Pachinger O, Ehrenbourg I, Mitterbauer G, Faulhaber M, Pühringer R, Tkatchouk E (2004) Intermittent hypoxia increases exercise tolerance in elderly men with and without coronary artery disease. Int J Cardiol 96:247–254

    Article  Google Scholar 

  • Brocherie F, Girard O, Faiss R, Millet GP (2017) Effects of repeated-sprint training in hypoxia on sea-level performance: a meta-analysis. Sports Med 47: 1651–1660

    Article  Google Scholar 

  • Coyle EF (2007) Physiological regulation of marathon performance. Sports Med 37:306–311

    Article  Google Scholar 

  • Faiss R, Girard O, Millet GP (2013a) Advancing hypoxic training in team sports: from intermittent hypoxic training to repeated sprint training in hypoxia. Br J Sports Med 47 (Suppl1):45–50

    Article  Google Scholar 

  • Faiss R, Léger B, Vesin JM, Fournier PE, Eggel Y, Dériaz O, Millet GP (2013b) Significant molecular and systemic adaptations after repeated sprint training in hypoxia. PLoS One 8:e56522

    Article  CAS  Google Scholar 

  • Faulhaber M, Gatterer H, Haider T, Patterson C, Burtscher M (2010) Intermittent hypoxia does not affect endurance performance at moderate altitude in well-trained athletes. J Sports Sci 28:513–519

    Article  Google Scholar 

  • Foster C, Lucia A (2007) Running economy: the forgotten factor in elite performance. Sports Med 37: 316–319

    Article  Google Scholar 

  • Gatterer H, Philippe M, Menz V, Mosbach F, Faulhaber M, Burtscher M (2014) Shuttle-run sprint training in hypoxia for youth elite soccer players: a pilot study. J Sports Sci Med 13:731–735

    Google Scholar 

  • Gore CJ, McSharry PE, Hewitt AJ, Saunders PU (2008) Preparation for football competition at moderate to high altitude. Scand J Med Sci Sports 18:85–95

    Article  Google Scholar 

  • Gore CJ, Rodríguez FA, Truijens MJ, Townsend NE, Stray-Gundersen J, Levine BD (2006) Increased serum erythropoietin but not red cell production after 4 wk of intermittent hypobaric hypoxia (4,000-5,500 m). J Appl Physiol 101:1386–1393

    Article  CAS  Google Scholar 

  • Gore CJ, Sharpe K, Garvican-Lewis LA, Saunders PU, Humberstone CE, Robertson EY, Wachsmuth NB, Clark SA, McLean BD, Friedmann-Bette B, Neya M, Pottgiesser T, Schumacher YO, Schmidt WF (2013) Altitude training and haemoglobin mass from the optimised carbon monoxide rebreathing method determined by a meta-analysis. Br J Sports Med 47 (Suppl 1):i31–39

    Article  Google Scholar 

  • Hauser A, Troesch S, Steiner T, Brocherie F, Girard O, Saugy JJ, Schmitt L, Millet GP, Wehrlin JP (2017) Do male athletes with already high initial haemoglobin mass benefit from „live high-train low“ altitude training? Exp Physiol 103:68–76

    Article  Google Scholar 

  • Hoppeler H, Klossner S, Vogt M (2008) Training in hypoxia and its effects on skeletal muscle tissue. Scand J Med Sci Sports 18 (Suppl1):38–49

    Article  Google Scholar 

  • Julian CG, Gore CJ, Wilber RL, Daniels JT, Fredericson M, Stray-Gundersen J, Hahn AG, Parisotto R, Levine BD (2004) Intermittent normobaric hypoxia does not alter performance or erythropoietic markers in highly trained distance runners. J Appl Physiol 96:1800–1807

    Article  CAS  Google Scholar 

  • Katayama K (2009) Effect of intermittent hypoxia on hypoxic ventilatory response. In: Xi L, Serebrovskaya TV (Hrsg) Intermittent hypoxia: from molecular mechanisms to clinical applications. Nova Science Publishers, New York, S 245–259

    Google Scholar 

  • Katayama K, Sato K, Matsuo H, Ishida K, Iwasaki K, Miyamura M (2004) Effect of intermittent hypoxia on oxygen uptake during submaximal exercise in endurance athletes. Eur J Appl Physiol 92:75–83

    Article  Google Scholar 

  • Levine, BD, Stray-Gundersen J (1997) „Living high-training low“: effect of moderate-altitude acclimatization with low-altitude training on performance. J Appl Physiol 83:102–112

    Article  CAS  Google Scholar 

  • Lundby C, Millet GP, Calbet JA, Bärtsch P, Subudhi AW (2012) Does „altitude training“ increase exercise performance in elite athletes? Br J Sports Med 46:792–795

    Article  Google Scholar 

  • Meller W, Mellerowicz H, Lübs E, Kieper C, Howald H (1974) Comparative studies on the effect of altitude training on the endurance at sea level in enzygotic twins. Schweiz Z Sportmed 22:129–140

    Google Scholar 

  • Millet GP, Roels B, Schmitt L, Woorons X, Richalet JP (2010) Combining hypoxic methods for peak performance. Sports Med 40:1–25

    Article  Google Scholar 

  • Millet GP, Faiss R, Pialoux V (2012) Point: hypobaric hypoxia induces different physiological responses from normobaric hypoxia. J Appl Physiol 112: 1783–1784

    Google Scholar 

  • Montero D, Lundby C (2017) No improved performance with repeated-sprint training in hypoxia versus normoxia: a double-blind and crossover study. Int J Sports Physiol Perform 12:161–167

    Article  Google Scholar 

  • Mounier R, Brugniaux JV (2012) Counterpoint: hypobaric hypoxia does not induce different responses from normobaric hypoxia. J Appl Physiol 112: 1784–1786

    Article  Google Scholar 

  • Neubauer JA (2001) Physiological and pathophysiological responses to intermittent hypoxia. J Appl Physiol 90:1593–1599

    Google Scholar 

  • Robach P, Lundby C (2012) Is live high-train low altitude training relevant for elite athletes with already high total hemoglobin mass? Scand J Med Sci Sports 22:303–305

    Article  CAS  Google Scholar 

  • Robach P, Schmitt L, Brugniaux JV, Nicolet G, Duvallet A, Fouillot JP, Moutereau S, Lasne F, Pialoux V, Olsen NV, Richalet JP (2006) Living high-training low: effect on erythropoiesis and maximal aerobic performance in elite Nordic skiers. Eur J Appl Physiol 97:695–705

    Article  Google Scholar 

  • Rusko HK, Tikkanen HO, Peltonen JE (2004) Altitude and endurance training. J Sports Sci 22:928–944

    Article  Google Scholar 

  • Saunders PU, Telford RD, Pyne DB, Cunningham RB, Gore CJ, Hahn AG, Hawley JA (2004) Improved running economy in elite runners after 20 days of simulated moderate-altitude exposure. J Appl Physiol 96:931–937

    Article  CAS  Google Scholar 

  • Schmidt W, Prommer N (2008) Effects of various training modalities on blood volume. Scand J Med Sci Sports 18 (Suppl1):57–69

    Article  Google Scholar 

  • Schuler B, Thomsen JJ, Gassmann M, Lundby C (2007) Timing the arrival at 2340 m altitude for aerobic performance. Scand J Med Sci Sports 17:588–594

    Article  CAS  Google Scholar 

  • Serebrovskaya TV (2002) Intermittent hypoxia research in the former soviet union and the commonwealth of independent States: history and review of the concept and selected applications. High Alt Med Biol 3:205–221

    Google Scholar 

  • Siebenmann C, Robach P, Jacobs RA, Rasmussen P, Nordsborg N, Diaz V, Christ A, Olsen NV, Maggiorini M, Lundby C (2012) „Live high-train low“ using normobaric hypoxia: a double-blinded, placebo-controlled study. J Appl Physiol 112:106–117

    Article  Google Scholar 

  • Truijens MJ, Rodríguez FA, Townsend NE, Stray-Gundersen J, Gore CJ, Levine BD (2008) The effect of intermittent hypobaric hypoxic exposure and sea level training on submaximal economy in well-trained swimmers and runners. J Appl Physiol 104:328–837

    Article  Google Scholar 

  • Vogt M, Hoppeler H (2010) Is hypoxia training good for muscles and exercise performance? Prog Cardiovasc Dis 52:525–533

    Article  Google Scholar 

  • Wehrlin JP, Zuest P, Hallén J, Marti B (2006) Live high-train low for 24 days increases hemoglobin mass and red cell volume in elite endurance athletes. J Appl Physiol 100:1938–1945

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to H. Gatterer or M. Faulhaber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Gatterer, H., Faulhaber, M. (2019). Höhentraining. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56396-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56396-0_40

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56395-3

  • Online ISBN: 978-3-662-56396-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics