Skip to main content

Höhenlungenödem

  • Chapter
Alpin- und Höhenmedizin
  • 4903 Accesses

Zusammenfassung

Das Höhenlungenödem („high altitude pulmonary edema“ [HAPE]) tritt mit einer Häufigkeit von 0,5–7 % ab einer Höhe von etwa 2500–3000 m nach 2 bis 5 Tagen auf. Entscheidendes pathophysiologisches Merkmal des HAPE ist der überschießende pulmonalarterielle Druck. Dieser führt zu einem Riss der alveolokapillären Membran und zu einer Exsudation von Flüssigkeit in die Alveolen. Leitsymptome des beginnenden HAPE sind eine verminderte Belastbarkeit und Husten, später kommen Husten, rötlich-schaumiger Auswurf und Ruhedyspnoe sowie Tachykardie hinzu. Unbehandelt führt das HAPE in der Regel zum Tode. Langsamer Aufstieg und geringe körperliche Belastung in den ersten 3 bis 5 Tagen auf neuer Höhe schützen vor HAPE. Die wichtigsten Therapiemaßnahmen (in dieser Reihenfolge) beim HAPE sind der Abstieg, die Gabe von Sauerstoff, die Anwendung eines Überdrucksacks sowie medikamentös die Gabe von Nifedipin 20 mg retard (evtl. Sildenafil 50 mg). Nach erfolgreicher Behandlung eines Höhenlungenödems ist ein Wiederaufstieg in größere Höhen bei Beachtung von optimaler Akklimatisation möglich.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Bärtsch P (1997) High altitude pulmonary edema. Respiration 64:435–443

    Article  Google Scholar 

  • Bärtsch P, Maggiorini M, Ritter M, Noti C, Vock P, Oelz O (1991) Prevention of high-altitude pulmonary edema by nifedipine. N Engl J Med 325:1284–1289

    Article  CAS  Google Scholar 

  • Bärtsch P, Waber U, Haeberli A, Maggiorini M, Kriemler S, Oelz O, Straub WP (1987) Enhanced fibrin formation in high-altitude pulmonary edema. J Appl Physiol 63:752–757

    Article  CAS  Google Scholar 

  • Basnyat B, Hargrove J, Holck PS, Srivastav S, Alekh K, Ghimire LV, Pandey K, Griffiths A, Shankar R, Kaul K, Paudyal A, Stasiuk D, Basnyat R, Davis C, Southard A, Robinson C, Shandley T, Johnson DW, Zafren K, Williams S, Weiss EA, Farrar JJ, Swenson ER (2008) Acetazolamide fails to decrease pulmonary artery pressure at high altitude in partially acclimatized humans. High Alt Med Biol 9:209–216

    Article  CAS  Google Scholar 

  • Berger MM, Luks AM, Bailey DM (2011) Transpulmonary plasma catecholamines in acute high-altitude pulmonary hypertension. Wild Environ Med 22:37–45

    Article  Google Scholar 

  • Cremona G, Asnaghi R, Baderna P, Brunetto A, Brutsaert T, Cavallaro C, Clark TM, Cogo A, Donis R, Lanfranchi P, Luks A, Novello N, Panzetta S, Perini L, Putnam M, Spagnolatti L, Wagner H, Wagner PD (2002) Pulmonary extravascular fluid accumulation in recreational climbers: a prospective study. Lancet 359:303–309

    Article  Google Scholar 

  • Dehnert C, Luks AM, Schendler G, Menold E, Berger MM., Mairbaurl H, Faoro V, Bailey DM, Castell C, Hahn G, Vock P, Swenson ER, Bärtsch P (2010) No evidence for interstitial lung oedema by extensive pulmonary function testing at 4,559 m. Eur Respir J 35:812–820

    Google Scholar 

  • Duplain H, Vollenweider L, Delabeys A , Nicod P, Bärtsch P, Scherrer U (1999) Augmented sympathetic activation during short-term hypoxia and high-altitude exposure in subjects susceptible to high-altitude pulmonary edema. Circulation 99:1713–1718

    Article  CAS  Google Scholar 

  • Elliott AR, Fu Z, Tsukimoto K, Prediletto R, Mathieu-Costello O, West JB (1992) Short-term reversibility of ultrastructural changes in pulmonary capillaries caused by stress failure. J Appl Physiol 73:1150–1158

    Article  CAS  Google Scholar 

  • Hackett PH, Roach RC, Schoene RB, Harrison GL, Mills WJ Jr (1988) Abnormal control of ventilation in high-altitude pulmonary edema. J Appl Physiol 64:1268–1272

    Article  CAS  Google Scholar 

  • Houston CS (1960) Acute pulmonary edema of high altitude. N Engl J Med 263:478–480

    Article  CAS  Google Scholar 

  • Hultgren HN, Honigman B, Theis K, Nicholas D (1996) High altitude pulmonary at a ski resort. West J Med 164:222–227

    Google Scholar 

  • Hultgren HN, Marticorena EA (1978) High altitude pulmonary edema. Epidemiologic observations in Peru. Chest 74:372–376

    Google Scholar 

  • Khan DA, Hashim R, Mizra TM (2003) Differentiation of pulmonary embolism form high altitude pulmonary edema. J Coll Phys Surg Pak 13:267–270

    Google Scholar 

  • Kriemler S, Kohler M, Zehnder M, Bloch KE, Rocca HB-L (2006) Successful treatment of severe acute mountain sickness and excessive pulmonary hypertension with dexamethasone in a prepubertal girl. High Alt Med Biol 7:256–261

    Article  Google Scholar 

  • Lahm T, Crisostomo PR, Markel TA, Wang M, Wang Y, Tan J, Meldrum DR (2008) Selective estrogen receptor-{alpha} and estrogen receptor-{beta} agonists rapidly decrease pulmonary artery vasoconstriction by a nitric oxide-dependent mechanism. Am J Physiol 295:R1486–R1493

    Google Scholar 

  • Maggiorini M, Brunner-La Rocca H-P, Peth S, Fischler M, Böhm T, Bernheim A, Kiencke S, Bloch KE, Dehnert C, Naeije R, Lehmann T, Bartsch P, Mairbäurl H (2006) Both tadalafil and dexamethasone may reduce the incidence of high-altitude pulmonary edema. Ann Intern Med 145:497–506

    Article  Google Scholar 

  • Maggiorini M, Melot C, Pierre S, Pfeiffer F, Greve I, Sartori C, Lepori M, Hauser M, Scherrer U, Naeije R (2001) High-altitude pulmonary edema is initially caused by an increase in capillary pressure. Circulation 103:2078–2083

    Article  CAS  Google Scholar 

  • Maggiorini M, Streit M, Siebenmann C (2009) Dexamethasone decreases systemic inflammatory and stress response and favors vasodilation in high altitude pulmonary edema susceptibles at 4559 m. International Hypoxia Symposium, Lake Louise, Canada, S 58

    Google Scholar 

  • Mairbäurl H (2006) Role of alveolar epithelial sodium transport in high altitude pulmonary edema (HAPE). Respir Physiol Neurobiol 151:178–191

    Article  Google Scholar 

  • Mosso A (1898) Life of man in the high Alps. T. Fisher Unwin, London

    Google Scholar 

  • Oelz O, Maggiorini M, Ritter M, Noti C, Waber U, Vock P, Bärtsch P (1992) Prevention and treatment of high altitude pulmonary edema by a calcium channel blocker. Int J Sports Med 13:65–68

    Article  Google Scholar 

  • Richalet JP, Gratadour P, Robach P, Pham I, Déchaux M, Joncquiert-Latarjet A, Mollard P, Brugniaux J, Cornolo J (2005) Sildenafil inhibits altitude-induced hypoxemia and pulmonary hypertension. Am J Respir Crit Care Med 171:275–281

    Article  Google Scholar 

  • Sartori C, Allemann Y, Duplain H, Lepori M, Egli M, Lipp E, Hutter D, Turini P, Hugli O, Cook S, Nicod P, Scherrer U (2002) Salmeterol for the prevention of high-altitude pulmonary edema. N Engl J Med 346:1631–1636

    Article  CAS  Google Scholar 

  • Steinacker JM, Tobias P, Menold E, Reissnecker S, Hohenhaus E, Liu Y, Lehmann M, Bärtsch P, Swenson ER (1998) Lung diffusing capacity and exercise in subjects with previous high altitude pulmonary oedema. Eur Respir J 11:643–650

    Google Scholar 

  • Swenson ER (2014) Carbonic anhydrase inhibitors and high altitude illnesses. Subcell Biochem 75:361–386

    Google Scholar 

  • Swenson ER, Bärtsch P (2012) High altitude pulmonary edema. Compr Physiol 2:2753–2773

    Google Scholar 

  • Swenson ER, Maggiorini M, Mongovin S, Gibbs JSR, Greve I, Mairbäurl H, Bärtsch P(2002) Pathogenesis of high-altitude pulmonary edema: Inflammation is not an etiologic factor. J Am Med Assoc 287: 2228–2235

    Article  Google Scholar 

  • West JB, Colice GL, Lee Y-J, Namba Y, Kurdak SS, Fu Z, Ou LC, Mathieu-Costello O (1995) Pathogenesis of high-altitude pulmonary oedema: direct evidence of stress failure of pulmonary capillaries. Eur Resp J 8:523–529

    Google Scholar 

  • West JB, Schoene RB, Luks AM, Milledge JS (2013) High altitude pulmonary edema. In: West JB, Schoene RB, Luks AM, Milledge JS (Hrsg) High altitude medicine and physiology, 5. Aufl. CRC-Press Taylor and Francis Group, Boca Raton, Florida, S 309–332

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fischer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Fischer, R. (2019). Höhenlungenödem. In: Berghold, F., et al. Alpin- und Höhenmedizin. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-56396-0_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-56396-0_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-56395-3

  • Online ISBN: 978-3-662-56396-0

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics