Skip to main content

Two Geometrical Applications of the Semi-random Method

  • Chapter
  • First Online:
New Trends in Intuitive Geometry

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 27))

  • 782 Accesses

Abstract

The semi-random method was introduced in the early eighties. In its first form of the method lower bounds were given for the size of the largest independent set in hypergraphs with certain uncrowdedness properties. The first geometrical application was a major achievement in the history of Heilbronn’s triangle problem. It proved that the original conjecture of Heilbronn was false. The semi-random method was extended and applied to other problems. In this paper we give two further geometrical applications of it. First, we give a slight improvement on Payne and Wood’s upper bounds on a Ramsey-type parameter, introduced by Gowers. We prove that any planar point set of size \(\Omega \left( \frac{n^2\log n}{\log \log n}\right) \) contains n points on a line or n independent points. Second, we give a slight improvement on Schmidt’s bound on Heilbronn’s quadrangle problem. We prove that there exists a point set of size n in the unit square that doesn’t contain four points with convex hull of area \(\mathcal {O}(n^{-3/2}(\log n)^{1/2})\).

Partially supported by TÉT_12_MX-1-2013-0006 and by National Research, Development and Innovation Office – NKFIH Fund No. SNN-117879. Supported by ERC-AdG. 321104, and OTKA Grant NK104186.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Ajtai, J. Komlós, E. Szemerédi, A dense infinite Sidon sequence. Eur. J. Comb. 2(1), 1–11 (1981)

    Article  MathSciNet  Google Scholar 

  2. M. Ajtai, J. Komlós, J. Pintz, J. Spencer, E. Szemerédi, Extremal uncrowded hypergraphs. J. Comb. Theory Ser. A 32(3), 321–335 (1982)

    Article  MathSciNet  Google Scholar 

  3. C. Bertram-Kretzberg, T. Hofmeister, H. Lefmann, An algorithm for Heilbronn’s problem. SIAM J. Comput. 30(2), 383–390 (2000)

    Article  MathSciNet  Google Scholar 

  4. R. Duke, H. Lefmann, V. Rödl, On uncrowded hypergraphs. Random Struct. Algorithms 6(2–3), 209–212 (1995)

    Article  MathSciNet  Google Scholar 

  5. T. Gowers, A Geometric Ramsey Problem, http://mathoverflow.net/questions/50928/a-geometric-ramsey-problem. Accessed May 2016

  6. S. Jukna, Extremal Combinatorics, With Applications in Computer Science, 2nd edn., Texts in Theoretical Computer Science (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  7. J. Komlós, J. Pintz, E. Szemerédi, A lower bound for Heilbronn’s problem. J. Lond. Math. Soc 25(2)(1), 13–24 (1982)

    Article  MathSciNet  Google Scholar 

  8. J. Komlós, J. Pintz, E. Szemerédi, On Heilbronn’s triangle problem. J. Lond. Math. Soc. 24(2)(2), 385–396 (1981)

    Article  MathSciNet  Google Scholar 

  9. M.S. Payne, D.R. Wood, On the general position subset selection problem. SIAM J. Discret. Math. 27(4), 1727–1733 (2013)

    Article  MathSciNet  Google Scholar 

  10. K.F. Roth, Estimation of the area of the smallest triangle obtained by selecting three out of \(n\) points in a disc of unit area, in Analytic Number Theory (Proc. Sympos. Pure Math., Vol. XXIV, St. Louis Univ., St. Louis, Mo., 1972) (Amer. Math. Soc, Providence, 1973), pp. 251–262

    Google Scholar 

  11. K.F. Roth, On a problem of Heilbronn. J. Lond. Math. Soc. 26, 198–204 (1951)

    Article  MathSciNet  Google Scholar 

  12. K.F. Roth, On a problem of Heilbronn II. Proc. Lond. Math. Soc. 25(3), 193–212 (1972)

    Article  MathSciNet  Google Scholar 

  13. K.F. Roth, On a problem of Heilbronn III. Proc. Lond. Math. Soc. 25(3), 543–549 (1972)

    Article  MathSciNet  Google Scholar 

  14. K.F. Roth, Developments in Heilbronn’s triangle problem. Adv. Math. 22(3), 364–385 (1976)

    Article  MathSciNet  Google Scholar 

  15. W. Schmidt, On a problem of Heilbronn. J. Lond. Math. Soc. 4(2), 545–550 (1971/72)

    Article  MathSciNet  Google Scholar 

  16. E. Szemerédi, W. Trotter, Extremal problems in discrete geometry. Combinatorica 3(3–4), 381–392 (1983)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Hajnal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 János Bolyai Mathematical Society and Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hajnal, P., Szemerédi, E. (2018). Two Geometrical Applications of the Semi-random Method. In: Ambrus, G., Bárány, I., Böröczky, K., Fejes Tóth, G., Pach, J. (eds) New Trends in Intuitive Geometry. Bolyai Society Mathematical Studies, vol 27. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57413-3_8

Download citation

Publish with us

Policies and ethics