Skip to main content

Brain Disease Diagnosis and Prognosis Based on EEG Data

  • Chapter
  • First Online:
Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence

Part of the book series: Springer Series on Bio- and Neurosystems ((SSBN,volume 7))

Abstract

This chapter applies the methodology for learning and pattern recognition with BI-SNN, introduced in Chap. 8 on EEG data measuring changes in brain states due to a brain disease or treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. E. Capecci, Z. Doborjeh, N. Mammone, F. La Foresta, F.C. Morabito, N. Kasabov, Longitudinal Study of Alzheimer’s Disease Degeneration through EEG Data Analysis with a NeuCube Spiking Neural Network Model, in Proceedings WCCI—IJCNN, Vancouver (IEEE Press, 24–29 July 2016), pp. 1360–1366

    Google Scholar 

  2. N. Kasabov, N. Scott, E. Tu, S. Marks, N. Sengupta, E. Capecci, M. Othman, M. Doborjeh, N. Murli, R. Hartono, J. Espinosa-Ramos, L. Zhou, F. Alvi, G. Wang, D. Taylor, V. Feigin, S. Gulyaev, M. Mahmoudh, Z.-G. Hou, J. Yang, Design methodology and selected applications of evolving spatio-temporal data machines in the NeuCube neuromorphic framework. Neural Netw. 78, 1–14 (2016). http://dx.doi.org/10.1016/j.neunet.2015.09.011

  3. W. Gerstner, What’s different with spiking neurons?, in Plausible Neural Networks for Biological Modelling, ed. by H. Mastebroek, H. Vos (Kluwer Academic Publishers, Dordrecht, 2001), pp. 23–48

    Chapter  Google Scholar 

  4. J. Talairach, P. Tournoux, Co-planar Stereotaxic Atlas of The Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging (Thieme Medical Publishers, New York, 1988)

    Google Scholar 

  5. L. Koessler, L. Maillard, A. Benhadid et al., Automated cortical projection of EEG sensors: Anatomical correlation via the international 10–10 system. NeuroImage 46, 64–72 (2009)

    Article  Google Scholar 

  6. N. Kasabov, NeuCube: a spiking neural network architecture for mapping, learning and understanding of spatio-temporal brain data. Neural Netw. 52, 62–76 (2014)

    Article  Google Scholar 

  7. J. Hu, Z.G. Hou, Y.X. Chen, N. Kasabov, N. Scott, EEG-Based Classification of Upper-limb ADL Using SNN for Active Robotic Rehabilation, in IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BooRob) (Sao Paulo, Brazil, 2014), pp. 409–414

    Google Scholar 

  8. V. Capano, H.J. Herrmann, L. de Arcangelis, Optimal percentage of inhibitory synapses in multi-task learning. Sci. Rep. 5, 9895 (2015)

    Article  Google Scholar 

  9. S. Song, K. Miller, L. Abbott et al., Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926 (2000)

    Article  Google Scholar 

  10. N. Kasabov, K. Dhoble, N. Nuntalid, G. Indiveri, Dynamic evolving spiking neural networks for on-line spatio–and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)

    Article  Google Scholar 

  11. S. Thorpe, J. Gautrais, Rank order coding. Computational Neuroscience: Trends Res. 13, 113–119 (1998)

    Article  Google Scholar 

  12. S. Fusi, Spike-driven synaptic plasticity for learning correlated patterns of asynchronous activity. Biol. Cybern 87, 459–470 (2002)

    Article  MATH  Google Scholar 

  13. M. Defoin-Platel, S. Schliebs, N. Kasabov, Quantum-inspired evolutionary algorithm: a multi-model EDA. IEEE Trans. Evol. Comput. 13(6), 1218–1232 (2009)

    Article  Google Scholar 

  14. M. Fiasce, M. Taisch, On the use of quantum-inspired optimization techniques for training spiking neural networks: a new method proposed, in Advances in Neural Networks: Computational and Theoretical Issues (Springer, 2015), pp. 359–368

    Google Scholar 

  15. J.B. Poline, R.A. Poldrack, Frontiers in brain imaging methods grand challenge. Front. Neurosci. 6, 96 (2012). https://doi.org/10.3389/fnins.2012.00096

    Article  Google Scholar 

  16. M.G. Doborjeh, N. Kasabov, Z. Doborjeh, SNN for Modelling Dynamic Brain Activities during a GO/NO_GO Task: A Case Study on Using EEG Data of Healthy Vs Addiction vs Treated Subjects. IEEE Trans. Biomed. Eng. 63(9), 1830–1841 (2016)

    Article  Google Scholar 

  17. G.Y. Wang et al., Changes in resting EEG following methadone treatment in opiate addicts. Clin. Neurophysiol. 126(5), 943–950 (2015)

    Article  Google Scholar 

  18. G. Y. Wang et al. Quantitative EEG and low-resolution electromagnetic tomography (LORETA) imaging of patients undergoing methadone treatment for opiate addiction. Clin. EEG Neurosci. (2015) https://doi.org/10.1177/1550059415586705

  19. G.Y. Wang et al., Auditory event-related potentials in methadone substituted opiate users. J. Psychopharmacol. 29(9), 983–995 (2015)

    Article  Google Scholar 

  20. N. Kasabov, To spike or not to spike: a probabilistic spiking neuron model. Neural Netw. 23(1), 16–19 (2010)

    Article  Google Scholar 

  21. A. Toga, P. Thompson, S. Mori, K. Amunts, K. Zilles, Towards multimodal atlases of the human brain. Nat. Rev. Neurosci. 7, 952–966 (2006)

    Article  Google Scholar 

  22. E. Niedermeyer, F.H.L. Da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields (Lippincott Williams & Wilkins, Philadelphia, 2005), p. 1309

    Google Scholar 

  23. N. Kasabov ed., Springer Handbook of Bio-Neuroinfortics (Springer, New York, 2014)

    Google Scholar 

  24. L. Benuskova, N. Kasabov, Computaional Neurogenetc Modelling (Springer, New York, 2007)

    Google Scholar 

  25. D.A. Craig, H.T. Nguyen, Adaptive EEG Thought Pattern Classifier For Advanced Wheelchair Control, in International Conference of the IEEE Engineering in Medical and Biology Society (2007), pp. 2544–2547

    Google Scholar 

  26. F. Lotte, M. Congedo, A. Lécuyer, F. Lamarche, B.A. Arnaldi, Review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1–R15 (2007)

    Article  Google Scholar 

  27. R.C. deCharms, Application of real-time fMRI. Nat. Rev. Neurosci 9(9), 720–729 (2008)

    Article  Google Scholar 

  28. T. Mitchel et al., Learning to decode cognitive states from brain images. Mach. Learn. 57, 145–175 (2004)

    Article  MATH  Google Scholar 

  29. K. Broderson et al., Generative embedding for model-based classification of fMRI data. PLoS Comput. Biol. 7(6), 1–19 (2011)

    MathSciNet  Google Scholar 

  30. K. Broderson et al., Decoding the perception of pain from fMRI using multivariate pattern analysis. NeuroImage 63, 1162–1170 (2012)

    Article  Google Scholar 

  31. K. Zilles, K. Amunts, Centenary of Brodmann’s map—conception and fate. Nat. Rev. Neurosci. 11, 139–145 (2010)

    Article  Google Scholar 

  32. S. Eickhoff et al., A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25, 1325–1335 (2005)

    Article  Google Scholar 

  33. J. Lancaster et al., Automated talairach atlas labels for functional brain mapping. Hum. Brain Mapp. 10, 120–131 (2000)

    Article  Google Scholar 

  34. A.C. Evans, D.L. Collins, S.R. Mills, E.D. Brown, R.L. Kelly, T.M. Peters, 3D Statistical Neuroanatomical Models from 305 MRI Volumes, in IEEE-Nuclear Science Symposium and Medical Imaging Conference (IEEE Press, 1993), pp. 1813–1817

    Google Scholar 

  35. J. Ashburner, Computational anatomy with the SPM software. Magn. Reson. Imaging 27(8), 1163–1174 (2009)

    Article  Google Scholar 

  36. L. Benuskova, Kasabov, Computational Neuro-genetic Modelling (Springer, New York, 2007), p. 290

    Book  Google Scholar 

  37. M. Hawrylycz et al., An anatomically comprehensive atlas of the adult human brain transcriptome. Nature 489, 391–399 (2012)

    Article  Google Scholar 

  38. W. Gerstner, H. Sprekeler, G. Deco, Theory and simulation in neuroscience. Science 338, 60–65 (2012)

    Article  Google Scholar 

  39. C. Koch, R. Reid, Neuroscience: observation of the mind. Nature 483(7390), 397–398 (2012)

    Article  Google Scholar 

  40. Van Essen et al., The human connectome project: a data acquisition perspective. NeuroImage 62(4), 2222–2231 (2012)

    Article  Google Scholar 

  41. H. Markram, The blue brain project. Nat. Rev. Neurosci. 7, 153–160 (2006)

    Article  Google Scholar 

  42. E.M. Izhikevich, G.M. Edelman, Large-scale model of mammalian thalamocortical systems. PNAS 105, 3593–3598 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

Some of the material in this chapter has been first published in journal and conference publications as referenced and cited in corresponding sections and sub-sections and also in book volumes [2, 16, 23, 24]. I acknowledge the great contribution of my co-authors of these publications Maryam Doborjeh, Elisa Capecci, Zohreh Doborjeh, Nathan Scott, Carlo Morabito, Nadia Mammone, F. La Foresta, Grace Wang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikola K. Kasabov .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kasabov, N.K. (2019). Brain Disease Diagnosis and Prognosis Based on EEG Data. In: Time-Space, Spiking Neural Networks and Brain-Inspired Artificial Intelligence . Springer Series on Bio- and Neurosystems, vol 7. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-57715-8_9

Download citation

Publish with us

Policies and ethics