Skip to main content

Biogene Kunststoff-Additive

Hochwertige Additive für Kunststoffe aus natürlichen Rohstoffen begünstigen die Kreislaufwirtschaft

  • Chapter
Biologische Transformation
  • 4666 Accesses

Zusammenfassung

Additive für Kunststoffe auf der Basis natürlicher Rohstoffe („Bio-Additive“) sind einerseits altbekannte Substanzen, die als solche oder in chemisch modifizierter Form seit vielen Jahren in der Kunststoffwelt eingesetzt werden. Andererseits steigt das Interesse an neuen Bioadditiven mit dem Ziel, petrochemische Rohstoffe zu ersetzen und eine Kreislaufwirtschaft zu begünstigen, sowie auch mit der zunehmenden Nachfrage nach Biopolymeren. Da nahezu alle Polymere Additive benötigen, um Eigenschaften, Verarbeitung und Anwendung sicherzustellen, ist es folgerichtig, auch Biopolymer-Formulierungen vollständig auf der Basis nachwachsender Rohstoffe zu entwickeln, also sowohl das Polymer als auch das Additiv. Zu den wichtigsten Additiven gehören Weichmacher, Antioxidantien und Flammschutzmittel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Quellen und Literatur

  1. NN (2014) Global plastic additives market to reach US$58 billion by 2020. Additives for polymers, July 2014, 11

    Google Scholar 

  2. Pfaendner R (2006) How will additives shape the future of plastics? Polymer Degr Stab 91:2249–2256

    Google Scholar 

  3. US 156,353 Improvement in the manufacture of celluloid (1874) Hyatt IS, Hyatt JW (Erf)

    Google Scholar 

  4. Vieira MGA, da Silva MA, dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: A review. Eur Pol J 47:254–263

    Google Scholar 

  5. Hosney H, Nadiem B, Ashour I, Mustafa I, El-Shibiniy A (2018) Epoxidized vegetable oil and bio-based materials as PVC plasticizer. J Appl Pol Sci 46270

    Google Scholar 

  6. Bocqué M, Voirin C, Lapinte V, Caillol S, Robin JJ (2016) Petro-based and bio-based plasticizers: Chemical structures to plasticizing properties. J Pol Sci: Pol Chem 54:11–33

    Google Scholar 

  7. Greco A, Brunetti D, Renna G, Mele G, Maffezzoli A (2010) Plasticizer for poly(vinyl chloride) from cardanol as a renewable resource material. Pol Degr Stab 95:2169–2174

    Google Scholar 

  8. Yin B, Hakkarainen M (2011) Oligomeric isosorbide esters as alternative renewable resource plasticizers for PVC. J Appl Pol Sci 119:2400–2407

    Google Scholar 

  9. Chiellini F, Ferri M, Morelli A, Dipaola L, Latini G (2013) Perspectives on alternatives to phthalate plasticized poly(vinylchloride) in medical devices applications. Progr Pol Sci 38:1067–1088

    Google Scholar 

  10. Brostow W, Lu X, Osmanson AT (2018) Nontoxic bio-plasticizers for PVC as replacements for conventional toxic plasticizers. Polymer Testing 69:63–70

    Google Scholar 

  11. Pyeon HB, Park JE, Suh H (2019) Non-phthalate plasticizer from camphor for flexible PVC with a wide range of available temperature. Polymer Testing 63:375–381

    Google Scholar 

  12. Yin B, Hakkarainen M (2014) Green plasticizers from liquefied wood. Waste and Biomass Valorization 5:651–659

    Google Scholar 

  13. Yang Y, Xiong Z, Zhang L, Tang Z, Zhang R, Zhu J (2016) Isorbide dioctanoate as a “green” plasticizer for poly(lactic acid). Materials and Design 91:262–268

    Google Scholar 

  14. Ho YC, Young SS, Yam KL (1998) Vitamin E based stabilizer components in HDPE polymer. J Additives Vinyl Techn 4:139–150

    Google Scholar 

  15. Al-Malaika S (2001) Learning from mother nature: Exploting a biological antioxidant for the melt stabilization of polymers. Macromol Symp 176:107–117

    Google Scholar 

  16. WO 2009007265 Stabilizer compositions (2009) Hornbach KH, Walter P (Erf) Priorität 10.07.2007 (Ciba Holding Inc.)

    Google Scholar 

  17. Doudin K, Al-Malaika S (2016) Vitamin E-stabilised UHMWPE for surgical orthopaedic implants: Quantification of vitamin E and characterisation of its transformation products. Pol Degr Stab 125:59–75

    Google Scholar 

  18. Dopico-Garcia MS, Castro-Lopez MM, López-Vilarino JM, Gonzales-Rodriguez MV, Valentao P, Andrade PB, Garcia-Garabal S, Abad MJ (2011) Natural Extracts as potential source of antioxidants to stabilize polyolefins. J Appl Pol Sci 119:3553–3559

    Google Scholar 

  19. Doudin K, Al-Malaika S, Sheena HH, Tverezovskiy V, Fowler P (2016) New genre of antioxidants from renewable natural resources: Synthesis and characterisation of rosemary plant-derived antioxidants and their performance in polyolefins. Pol Degr Stab 130:126–134

    Google Scholar 

  20. Cerruti P, Malinconico M, Rychly J, Matisova-Rychla L, Carfagna C (2009) Effect of natural antioxidants on the stability of polypropylene films. Pol Degr Stab 94:2095–2100

    Google Scholar 

  21. Ambrogi V, Cerruti P, Carfagna C, Malinconico M, Perrotti M, Persico P (2011) Natural antioxidants for polypropylene stabilisation. Polym Degr Stab 96:2152–2158

    Google Scholar 

  22. Kirschweng B, Tilinger BM, Hegely B, Samu G, Tatraaljai D, Földes E, Pukanszky B (2018) Melt stabilisation of PE with natural antioxidants: Comparison of rutin and quercetin. Eur Pol J 103:228–237

    Google Scholar 

  23. Kirschweng B, Bencze K, Sarközi M, Hegely B, Samu G, Hari J, Tatraaljai D, Földes E, Kallay M, Pukanszky B (2016) Melt stabilization of polyethylene with dihydromyrecitin, a natural antioxidant. Pol Degr Stab 133:192–200

    Google Scholar 

  24. Kirschweng B, Vörös B, Tatraaljai D, Tsuga M, Földes E, Pukanszky B (2017) Natural antioxidants as melt stabilizers for PE: Comparison of silymarin and quercetin. Eur Pol J 90:456–466

    Google Scholar 

  25. Masek A (2015) Flavonoids as natural stabilizers and color indicators of ageing for polymeric materials. Polymers 7:1125–1144

    Google Scholar 

  26. Tatraaljai D, Kirschweng B, Kovacs J, Foldes E, Pukanszky B (2013) Processing stabilisation of polyethylene with a natural antioxidant, curcumin. Eur Polym J 49:1196–1203

    Google Scholar 

  27. Ambrogi V, Panzella L, Persico P, Cerruti P, Lonz CA, Carfagna C, Verotta L, Canev Ea, Napolitano A, d´ Íschia M (2014) An antioxidant bioinspired phenolic polymer for efficient stabilization of polyethylene. Biomacromolecules 15:302–310

    Google Scholar 

  28. Reano AF, Domenek S, Pernes M, Beaugrand J, Allais F (2016) Ferulic-acid-based bis/trisphenols as renewable antioxidants for polypropylene and poly(butylene succinate). ACS Sustainable Chemistry and Engineering 4:6562–6571

    Google Scholar 

  29. Voirin C, Caillol S, Sadaverte NV, Tawade BV, Boutevin B, Wadgaonkar PP (2014) Functionalization of cardanol: towards biobased polymers and additives. Polym Chem 5:3142–3162

    Google Scholar 

  30. Pouteau C, Dole P, Cathala B, Averous L, Boquillon N (2003) Antioxidant properties of lignin in polypropylene. Polym Degr Stab 81:9–18

    Google Scholar 

  31. Gregorová A, Kosikova B, Moravcik R (2006) Stabilization effect of lignin in natural rubber. Polym Degr Stab 91: 229–233

    Google Scholar 

  32. Cerruti P, Santagata G, Gomez d´Ayala G, Ambrogi V, Carfagna C, Malinconico M, Persico P (2011) Effect of a natural polyphenolic extract on the properties of a biodegradable starch-based polymer. Pol Degr Stab 96:839–846

    Google Scholar 

  33. Barnes PW, Flint SD, Ryel RJ, Tobler MA, Barkley AE, Wargent JJ (2015) Rediscovering leaf optical properties: New insights into plant acclimation to solar UV radiation. Plant Physiology and Biochemistry 93:94–100

    Google Scholar 

  34. Samper MD, Fages E, Fenollar O, Boronat T, Balart R (2013) The potential of flavonoids as natural antioxidants and UV light stabilizers for polypropylene. J Appl Pol Sci 129:1707–1716

    Google Scholar 

  35. Diouf-Lewis A, Commereuc S, Verney V (2017) Toward greener polyolefins: Antioxidant effect of phytic acid from cereal waste Eur Pol J 96:190–199

    Google Scholar 

  36. Dintcheva NT, Arrigo R, Baiamonte M, Rizzarelli P, Curcuruto G (2017) Concentrationdependent anti/pro-oxidant activity of natural phenolic compounds in bio-polyesters. Pol Degr Stab 142:21–28

    Google Scholar 

  37. Arrigo R, Dintcheva NT (2017) Natural anti-oxidants for bio-polymeric materials. Archives in Chemical Research 1:1–4

    Google Scholar 

  38. Dintcheva NT, LaMantia FP, Arrigo R (2014) Natural compounds as light stabilizer for a starch-based biodegradable polymer. J Pol Eng 34:441–449

    Google Scholar 

  39. Dintcheva NT, Baiamonte M, Spera M (2018) Assessment of pro-oxidant activity of natural phenolic compounds in bio-polyesters. Pol Degr Stab 152:280–288

    Google Scholar 

  40. Cheng L, Wu W, Meng W, Xu S, Han H, Yu Y, Qu H, Xu J (2018) Application of metallic phytates to poly(vinyl chloride) as efficient biobased phosphorous flame retardants. J Appl Pol Sci 46601

    Google Scholar 

  41. Zhang Z, Liu S, Wang B, Yang T, Cui X, Wang H (2015) Preparation of a novel phosphorus- and nitrogen-containing flame retardant and its synergistic effect in the intumesent flame-retarding polypropylene system. Polymer Composites 36:1606–1619

    Google Scholar 

  42. Costes L, Laoutid F, Dumazert L, Lopez-Cuesta JM, Brohez S, Delvosalle C, Dubois P (2015) Metallic phytates as efficient bio-based phosphorous flame retardant additives for poly(lactic acid). Pol. Degr. Stab. 119:217–227

    Google Scholar 

  43. Costes L, Laoutid F, Brohez S, Delvosalle C, Dubois P (2017) Phytic-acid-lignin combination: A simple and efficient route for enhancing thermal and flame retardant properties of polylactide. Eur Pol J 94:270–285

    Google Scholar 

  44. Costes L, Laoutid F, Khelifa F, Rose G, Brohez S, Delvosalle C, Dubois P (2016) Cellulose/phosphorus combinations for sustainable fire retarded polylactide. Eur Pol J 74:218–228

    Google Scholar 

  45. Zhang S, Jin X, Gu X, Chen C, Li H, Zhang Z, Sun J (2018) The preparation of fully bio-based flame retardant poly(lactic acid) composites containing casein. J Appl Pol Sci 46599

    Google Scholar 

  46. Illy N, Fache M, Menard R, Negrell C, Caillol S, David G (2015) Phosphorylation of bio-based compounds: The state of the art. Polym Chem 6:6257–6291

    Google Scholar 

  47. Prieur B, Meub M, Wittemann M, Klein R, Bellayer S, Fontaine G, Bourbigot S (2016) Phosphorylation of lignin to flame retard acrylonitrile butadiene styrene (ABS). Pol Degr Stab 127:32–43

    Google Scholar 

  48. Ravichandran S, Bouldin RM, Kumar J, Nagarajan R (2011) A renewable waste material for the synthesis of a novel non-halogenated flame retardant polymer. J Cleaner Production 19:454–458

    Google Scholar 

  49. Xia Z, Kiratitanavit W, Facendola P, Thota S, Yu S, Kumar J, Mosurkai R, Nagarajan R (2018) Fire resistant polyphenols based on chemical modification of bio derived tannic acid. Pol Degr Stab 153:227–243

    Google Scholar 

  50. Hoffmann K, Huber G, Mäder D (2001) Nucleating and clarifying agents for polyolefins. Macromol Symp 176:83–91

    Google Scholar 

  51. Jiang L, Shen T, Xu P, Zhao X, Li X, Dong W, Ma P, Chen M (2016) Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. epolymers 16:1–13

    Google Scholar 

  52. Feng Y, Ma P, Xu P, Wang R, Dong W, Chen M, Joziasse C (2018) The crystallization behavior of poly(lactic acid) with different types of nucleating agents. Int J Biol Macromol 106:955–962

    Google Scholar 

  53. Mastromatteo M, Mastromatteo M, Conte A, Del Nobile MA (2012) Antimicrobial enzymes and natural extracts in plastics. In: Antimicrobial Polymers, Wiley, Hoboken, S 159–194

    Google Scholar 

  54. Grande R, Pessan LA, Carvalho AJF (2018) Thermoplastic blends of chitosan: A method for the preparation of high thermally stable blends with polyesters. Carbohydrate Polymers 191:44–52

    Google Scholar 

  55. WO 2005027642 Repellent preparations (2005) Eade DW (Erf) Priorität 25.09.2003

    Google Scholar 

  56. WO 2018094314 Malodor counteractant composition and methods (2018) Fields M, Nero R, Orson S, Siegel R, Kocis J (Erf) Prirität 21.11.2016 (Bell Flavors and Fragrances Inc.)

    Google Scholar 

  57. Hoven VP, Rattanakarun K, Tanaka Y (2004) Reduction of offensive odor from natural rubber by odor-reducing agents. J Appl Pol Sci 92:2253–2260

    Google Scholar 

  58. Allen NS, Edge M, Liauw CM, Hoang E (2018) Role of phenol and phosphite antioxidant combinations in the thermal stabilization of metallocene LLDPE (mLLDPE): Optimisation and performance and influence of metal stearates on multiple extrusions. Pol Degr Stab 152:208–217

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Deutschland, ein Teil von Springer Nature

About this chapter

Cite this chapter

Pfaendner, R., Melz, T. (2019). Biogene Kunststoff-Additive. In: Neugebauer, R. (eds) Biologische Transformation. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58243-5_9

Download citation

Publish with us

Policies and ethics