Skip to main content

A Logic for Spatial Reasoning in the Framework of Rough Mereology

  • Chapter
  • First Online:
Transactions on Rough Sets XXI

Part of the book series: Lecture Notes in Computer Science ((TRS,volume 10810))

  • 302 Accesses

Abstract

Spatial reasoning concerns a language in which spatial objects are described and argued about. Within the plethora of approaches, we single out the one set in the framework of mereology - the theory of concepts employing the notion of a part as the primitive one. Within mereology, we can choose between the approach based on part as the basic notion or the approach based on the notion of a connection from which the notion of a part is defined. In this work, we choose the former approach modified to the rough mereology version in which the notion of a part becomes ‘fuzzified’ to the notion of a part to a degree. The prevalence of this approach lies in the fact that it does allow for quantitative assessment of relations among spatial objects in distinction to only qualitative evaluation of those relations in case of other mereology based approaches.

In this work, we introduce sections on mereology based reasoning, covering part and connection based variants as well as rough mereology in order to provide the Reader with the conceptual environment we work in. We recapitulate shortly those approaches along with based on them methods for spatial reasoning. We then introduce the mereological approach in the topological context used in spatial reasoning, i.e., in collections of regular open or regular closed sets known to form complete Boolean algebras. In this environment, we create a logic for reasoning about parts and degrees of inclusion based on an abstract notion of a mass which generalizes geometric measure of area or volume and extends in the abstract manner the Lukasiewicz logical rendering of probability calculus. We give some applications, notably, we extend the relation of betweenness applied by us earlier in robot navigation and we give it the abstract characterization.

To Professor Andrzej Skowron on the seventy fifth birthday.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agah, A.: Robot teams, human workgroups and animal sociobiology. A review of research on natural and artificial multi-agent autonomous systems. Adv. Robot. 10, 523–545 (1997)

    Article  Google Scholar 

  2. van Benthem, J.: The Logic of Time. Reidel. Dordrecht (1983)

    Google Scholar 

  3. Cao, Y.U., Fukunaga, A.S., Kahng, A.B.: Cooperative mobile robotics: antecedents and directions. Auton. Robot. 4, 7–27 (1997)

    Article  Google Scholar 

  4. Casati, R., Varzi, A.C.: Parts and Places. The Structures of Spatial Representation. MIT Press, Cambridge (1999)

    Google Scholar 

  5. Clarke, B.L.: A calculus of individuals based on connection. Notre Dame J. Form. Log. 22(2), 204–218 (1981)

    Article  MathSciNet  Google Scholar 

  6. Cohn, A.G.: Calculi for qualitative spatial reasoning. In: Calmet, J., Campbell, J.A., Pfalzgraf, J. (eds.) AISMC 1996. LNCS, vol. 1138, pp. 124–143. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61732-9_54

    Chapter  Google Scholar 

  7. Cohn, A.G., Gooday, J.M., Bennett, B., Gotts, N.M.: A logical approach to representing and reasoning about space. In: Calmet, J., Campbell, J.A., Pfalzgraf, J. (eds.) Artificial Intelligence and Symbolic Mathematical Computation. Lecture Notes in Computer Science, vol. 1138, pp. 124–143. Springer, Heidelberg (1996). https://doi.org/10.1007/978-94-015-8994-9_8

    Chapter  Google Scholar 

  8. Cohn, A.G., Gotts, N.M.: Representing spatial vagueness: a mereological approach. In: Proceedings of the 5th International Conference on Principles of Knowledge Representation and Reasoning, KR 1996, pp. 230–241. Morgan Kaufmann, San Francisco (1996)

    Google Scholar 

  9. Cohn, A.G., Randell, D., Cui, Z., Bennett, B.: Qualitative spatial reasoning and representation. In: Carrete, N., Singh, M. (eds.) Qualitative Reasoning and Decision Technologies, Barcelona, pp. 513–522 (1993)

    Google Scholar 

  10. Cohn, A.G., Varzi, A.C.: Connections relations in mereotopology. In: Prade H. (ed.) Proceedings of ECAI 1998 13th European Conference on Artificial Intelligence, pp. 150–154. Wiley, Chichester (1998)

    Google Scholar 

  11. Egenhofer, M.J.: Reasoning about binary topological relations. In: Gunther, O., Schek, H.(eds.) Proceedings of Advances in Spatial Databases, SSD 1991, Berlin, pp. 143–160 (1991)

    Google Scholar 

  12. Gotts, N.M., Gooday, J.M., Cohn, A.G.: A connection based approach to commonsense topological description and reasoning. Monist 79(1), 51–75 (1996)

    Article  Google Scholar 

  13. Gotts, N.M., Cohn, A.G.: A mereological approach to representing spatial vagueness. In: Working papers. The Ninth International Workshop on Qualitative Reasoning, QR 1995 (1995)

    Google Scholar 

  14. H\(\acute{a}\)jek, P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht (1998)

    Google Scholar 

  15. de Laguna, T.: Point, line and surface as sets of solids. J. Philos. 19, 449–461 (1922)

    Article  Google Scholar 

  16. Leśniewski, S.: Foundations of the General Theory of Sets (in Polish). Moscow (1916)

    Google Scholar 

  17. Ling, C.-H.: Representation of associative functions. Publ. Math. Debr. 12, 189–212 (1965)

    MathSciNet  MATH  Google Scholar 

  18. Łukasiewicz, J.: Die Logischen Grundlagen der Wahrscheinlichkeitsrechnung. Kraków, 1913. Cf. Borkowski, L. (ed.) Selected Works. North Holland-PWN, Amsterdam-Warszawa, pp. 16–63 (1970)

    Google Scholar 

  19. Matarić M.: Interaction and intelligent behavior. Ph.D. dissertation. MIT EECS Department (1994)

    Google Scholar 

  20. Nicolas, D.: The logic of mass expressions. In: Stanford Enc. Phil. https://plato.stanford.edu/entries/logic-masseapress/

  21. Ośmiałowski, P.: On path planning for mobile robots: introducing the mereological potential field method in the framework of mereological spatial reasoning. J. Autom. Mob. Robot. Intell. Syst. (JAMRIS) 3(2), 24–33 (2009)

    Google Scholar 

  22. Osmialowski P.: Planning and navigation for mobile autonomous robots. Ph.D. dissertation. Polkowski, L. Supervisor, Polish-Japanese Academy IT. PJAIT Publishers, Warszawa (2011)

    Google Scholar 

  23. Pawlak, Z.: Rough Sets: Theoretical Aspects of Data Analysis. Kluwer, Dordrecht (1992)

    Google Scholar 

  24. O’smiaıowski, P., Polkowski, L.: Spatial reasoning based on rough mereology: a notion of a robot formation and path planning problem for formations of mobile autonomous robots. In: Peters, J.F., Skowron, A., Słowiński, R., Lingras, P., Miao, D., Tsumoto, S. (eds.) Transactions on Rough Sets XII. LNCS, vol. 6190, pp. 143–169. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14467-7_8

    Chapter  Google Scholar 

  25. Polkowski, L.: Rough Sets. Mathematical Foundations. Springer, Heidelberg (2002)

    Book  Google Scholar 

  26. Polkowski, L.: A rough set paradigm for unifying rough set theory and fuzzy set theory. Fundam. Inform. 54, 67–88 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Polkowski, L.: Toward rough set foundations. Mereological approach. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 8–25. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25929-9_2

    Chapter  MATH  Google Scholar 

  28. Polkowski, L.: Formal granular calculi based on rough inclusions. In: Proceedings of IEEE 2005 Conference on Granular Computing GrC 2005, Beijing, China, pp. 57–62. IEEE Press (2005)

    Google Scholar 

  29. Polkowski, L.: Granulation of knowledge in decision systems: the approach based on rough inclusions. The method and its applications. In: Kryszkiewicz, M., Peters, J.F., Rybinski, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 69–79. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73451-2_9

    Chapter  Google Scholar 

  30. Polkowski, L.: A unified approach to granulation of knowledge and granular computing based on rough mereology: a survey. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing, pp. 375–400. Wiley, Chichester (2008)

    Google Scholar 

  31. Polkowski, L.: Granulation of knowledge: similarity based approach in information and decision systems. In: Meyers, R.A. (ed.) Springer Encyclopedia of Complexity and System Sciences, pp. 1464–1487. Springer, Heidelberg (2009). https://doi.org/10.1007/978-1-4614-1800-9_94

    Chapter  Google Scholar 

  32. Polkowski, L.: Approaimate Reasoning by Parts. An Introduction to Rough Mereology. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22279-5

    Book  Google Scholar 

  33. Polkowski, L.: Mereology in engineering and computer science. In: Calosi, C., Graziani, P. (eds.) Mereology and the Sciences. SL, vol. 371, pp. 217–291. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05356-1_10

    Chapter  Google Scholar 

  34. Polkowski, L.: From Leśniewski, Łukasiewicz, Tarski to Pawlak: enriching rough set based data analysis. A retrospective survey. Fundam. Inform. 154(1–4), 343–358 (2017)

    Article  Google Scholar 

  35. Polkowski, L.: The counterpart to the Bayes theorem in mass-based rough mereology. In: Proceedings CS&P 2018. Humboldt Universität zu Berlin, September 2018. Informatik-Berichte series. Informatik-Bericht 248, pp. 47–56 (2018). http://ceur-ws.org/Vol-2240/paper4.pdf

  36. Polkowski, L., Ośmiałowski, P.: Spatial reasoning with applications to mobile robotics. In: Aing-Jiang, J. (ed.): Mobile Robots Motion Planning. New Challenges. I-Tech, Vienna, pp. 433–453 (2008)

    MATH  Google Scholar 

  37. Polkowski, L., Ośmiałowski, P.: Navigation for mobile autonomous robots and their formations: an application of spatial reasoning induced from rough mereological geometry. In: Barrera, A. (ed.) Mobile Robots Navigation, pp. 339–354. In Tech, Zagreb (2010)

    MATH  Google Scholar 

  38. Reynolds, C.: Flocks, herds and schools. A distributed behavioral model. Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  39. Polkowski, L., Skowron, A.: Rough mereology. In: Raś, Z.W., Zemankova, M. (eds.) ISMIS 1994. LNCS, vol. 869, pp. 85–94. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58495-1_9

    Chapter  Google Scholar 

  40. Polkowski, L., Skowron, A.: Rough mereology: a new paradigm for approaimate reasoning. Int. J. Approx. Reason. 15(4), 333–365 (1997)

    Article  Google Scholar 

  41. Randell D., Cui Z., Cohn A. G.: A spatial logic based on regions and connection. In: Proceedings of the 3rd International Conference on Principles of Knowledge Representation and Reasoning KR 1992. Morgan Kaufmann, San Mateo, pp. 165–176 (1992)

    Google Scholar 

  42. Tarski, A.: Zur Grundlegen der Booleschen Algebra I. Fund. Math. 24, 177–198 (1935)

    Article  Google Scholar 

  43. Tarski, A., Givant, S.: Symbolic logic. Bull 5(2), 175–214 (1959)

    Google Scholar 

  44. Whitehead, A.N.: La th\(\acute{e}\)orie relationniste de l’espace. Revue de M\(\acute{e}\)taphysique et de Morale 23, 423–454 (1916)

    Google Scholar 

  45. Whitehead, A.N.: An Enquiry Concerning the Principles of Natural Knowledge. Cambridge University Press, Cambridge (1919)

    MATH  Google Scholar 

  46. Whitehead, A.N.: The Concept of Nature. Cambridge University Press, Cambridge (1920)

    MATH  Google Scholar 

  47. Whitehead, A.N.: Process and Reality: An Essay in Cosmology. Macmillan, New York (1929)

    MATH  Google Scholar 

  48. Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lech Polkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polkowski, L. (2019). A Logic for Spatial Reasoning in the Framework of Rough Mereology. In: Peters, J., Skowron, A. (eds) Transactions on Rough Sets XXI. Lecture Notes in Computer Science(), vol 10810. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58768-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58768-3_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58767-6

  • Online ISBN: 978-3-662-58768-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics