Skip to main content

Parallel Learning Algorithms of Local Support Vector Regression for Dealing with Large Datasets

  • Chapter
  • First Online:
Transactions on Large-Scale Data- and Knowledge-Centered Systems XLI

Part of the book series: Lecture Notes in Computer Science ((TLDKS,volume 11390))

Abstract

New parallel algorithms of local support vector regression (local SVR), called kSVR, krSVR are proposed in this paper to efficiently handle the prediction task for large datasets. The learning strategy of kSVR performs the regression task with two main steps. The first one is to partition the training data into k clusters, followed which the second one is to learn the SVR model from each cluster to predict the data locally in the parallel way on multi-core computers. The krSVR learning algorithm trains an ensemble of T random kSVR models for improving the generalization capacity of the kSVR alone. The performance analysis in terms of the algorithmic complexity and the generalization capacity illustrates that our kSVR and krSVR algorithms are faster than the standard SVR for the non-linear regression on large datasets while maintaining the high correctness in the prediction. The numerical test results on five large datasets from UCI repository showed that proposed kSVR and krSVR algorithms are efficient compared to the standard SVR. Typically, the average training time of kSVR and krSVR are 183.5 and 43.3 times faster than the standard SVR; kSVR and krSVR also improve 62.10%, 63.70% of the relative prediction correctness compared to the standard SVR, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It must be noted that the complexity of the kSVR approach does not include the kmeans clustering used to partition the full dataset. But this step requires insignificant time compared with the quadratic programming solution.

References

  1. Lyman, P., et al.: How much information (2003)

    Google Scholar 

  2. National Research Council, Division on Engineering and Physical Sciences, Board on Mathematical Sciences and Their Applications, Committee on the Analysis of Massive Data, Committee on Applied and Theoretical Statistics: Frontiers in Massive Data Analysis. The National Academies Press (2013)

    Google Scholar 

  3. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  4. Guyon, I.: Web page on SVM applications (1999). http://www.clopinet.com/isabelle/Projects/-SVM/app-list.html

  5. Bui, L.D., Tran-Nguyen, M.T., Kim, Y.G., Do, T.N.: Parallel algorithm of local support vector regression for large datasets. In: Proceedings of Future Data and Security Engineering - 4th International Conference, FDSE 2017, pp. 139–153, Ho Chi Minh City, Vietnam, 29 November–1 December (2017)

    Chapter  Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM : a library for support vector machines. ACM Trans. Intell. Syst. Technol. 2(27), 1–27 (2011)

    Article  Google Scholar 

  7. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297. University of California Press, Berkeley, January 1967

    Google Scholar 

  8. Lichman, M.: UCI machine learning repository (2013)

    Google Scholar 

  9. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: And Other Kernel-based Learning Methods. Cambridge University Press, New York (2000)

    Book  MATH  Google Scholar 

  10. Platt, J.: Fast training of support vector machines using sequential minimal optimization. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, pp. 185–208 (1999)

    Google Scholar 

  11. OpenMP Architecture Review Board: OpenMP application program interface version 3.0 (2008)

    Google Scholar 

  12. Bi, J., Bennett, K.P.: A geometric approach to support vector regression. Neurocomputing 55(1–2), 79–108 (2003)

    Article  Google Scholar 

  13. Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems 4, NIPS Conference, Denver, Colorado, USA, 2–5 December 1991, pp. 831–838 (1991)

    Google Scholar 

  14. Bottou, L., Vapnik, V.: Local learning algorithms. Neural Comput. 4(6), 888–900 (1992)

    Article  Google Scholar 

  15. Vapnik, V., Bottou, L.: Local algorithms for pattern recognition and dependencies estimation. Neural Comput. 5(6), 893–909 (1993)

    Article  Google Scholar 

  16. Do, T.N., Poulet, F.: Parallel learning of local SVM algorithms for classifying large datasets. T. Large-Scale Data-Knowl.-Cent. Syst. 31, 67–93 (2016)

    Google Scholar 

  17. Do, T.N., Poulet, F.: Latent-lSVM classification of very high-dimensional and large-scale multi-class datasets. Concurr. Comput.: Pract. Exp. 0(0), e4224

    Google Scholar 

  18. Vapnik, V.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Heidelberg (2000). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  19. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  20. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  21. Breiman, L.: Arcing classifiers. Ann. Stat. 26(3), 801–849 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45014-9_1

    Chapter  Google Scholar 

  23. Whaley, R., Dongarra, J.: Automatically tuned linear algebra software. In: Ninth SIAM Conference on Parallel Processing for Scientific Computing, CD-ROM Proceedings (1999)

    Google Scholar 

  24. Lin, C.: A practical guide to support vector classification (2003)

    Google Scholar 

  25. Boser, B., Guyon, I., Vapnik, V.: An training algorithm for optimal margin classifiers. In: Proceedings of 5th ACM Annual Workshop on Computational Learning Theory of 5th ACM Annual Workshop on Computational Learning Theory, pp. 144–152. ACM (1992)

    Google Scholar 

  26. Osuna, E., Freund, R., Girosi, F.: An improved training algorithm for support vector machines. In: Gile, L., Morgan, N., Wilson, E. (eds.) Neural Networks for Signal Processing VII, Jose Principe, pp. 276–285 (1997)

    Google Scholar 

  27. Shalev-Shwartz, S., Singer, Y., Srebro, N.: Pegasos: primal estimated sub-gradient solver for SVM. In: Proceedings of the Twenty-Fourth International Conference Machine Learning, pp. 807–814 (2007). ACM

    Google Scholar 

  28. Bottou, L., Bousquet, O.: The tradeoffs of large scale learning. In: Platt, J., Koller, D., Singer, Y., Roweis, S. (eds.) Advances in Neural Information Processing Systems, vol. 20, pp. 161–168. NIPS Foundation (2008). http://books.nips.cc

  29. Do, T.N.: Parallel multiclass stochastic gradient descent algorithms for classifying million images with very-high-dimensional signatures into thousands classes. Vietnam. J. Comput. Sci. 1(2), 107–115 (2014)

    Article  Google Scholar 

  30. Do, T.N., Poulet, F.: Parallel multiclass logistic regression for classifying large scale image datasets. In: Advanced Computational Methods for Knowledge Engineering - Proceedings of 3rd International Conference on Computer Science, Applied Mathematics and Applications - ICCSAMA 2015, Metz, France, 11–13 May 2015, pp. 255–266 (2015)

    Chapter  Google Scholar 

  31. Do, T.-N., Tran-Nguyen, M.-T.: Incremental parallel support vector machines for classifying large-scale multi-class image datasets. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2016. LNCS, vol. 10018, pp. 20–39. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48057-2_2

    Chapter  Google Scholar 

  32. Yuan, G., Ho, C., Lin, C.: Recent advances of large-scale linear classification. Proc. IEEE 100(9), 2584–2603 (2012)

    Article  Google Scholar 

  33. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: LIBLINEAR: a library for large linear classification. J. Mach. Learn. Res. 9(4), 1871–1874 (2008)

    MATH  Google Scholar 

  34. Ho, C., Lin, C.: Large-scale linear support vector regression. J. Mach. Learn. Res. 13, 3323–3348 (2012)

    MathSciNet  MATH  Google Scholar 

  35. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster computing with working sets. In: Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing, HotCloud 2010, p. 10. USENIX Association, Berkeley (2010)

    Google Scholar 

  36. Lin, C., Tsai, C., Lee, C., Lin, C.: Large-scale logistic regression and linear support vector machines using spark. In: 2014 IEEE International Conference on Big Data, Big Data 2014, Washington, DC, USA, 27–30 October 2014, pp. 519–528 (2014)

    Google Scholar 

  37. Zhuang, Y., Chin, W., Juan, Y., Lin, C.: Distributed Newton methods for regularized logistic regression. In: Proceedings Advances in Knowledge Discovery and Data Mining - 19th Pacific-Asia Conference, PAKDD 2015, Part II, Ho Chi Minh City, Vietnam, 19–22 May 2015, pp. 690–703 (2015)

    Chapter  Google Scholar 

  38. Chiang, W., Lee, M., Lin, C.: Parallel dual coordinate descent method for large-scale linear classification in multi-core environments. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016, pp. 1485–1494 (2016)

    Google Scholar 

  39. Tsai, C., Lin, C., Lin, C.: Incremental and decremental training for linear classification. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014, pp. 343–352 (2014)

    Google Scholar 

  40. Huang, H., Lin, C.: Linear and kernel classification: when to use which? In: Proceedings of the SIAM International Conference on Data Mining 2016 (2016)

    Google Scholar 

  41. Jacobs, R.A., Jordan, M.I., Nowlan, S.J., Hinton, G.E.: Adaptive mixtures of local experts. Neural Comput. 3(1), 79–87 (1991)

    Article  Google Scholar 

  42. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  43. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  44. Collobert, R., Bengio, S., Bengio, Y.: A parallel mixture of SVMs for very large scale problems. Neural Comput. 14(5), 1105–1114 (2002)

    Article  MATH  Google Scholar 

  45. Gu, Q., Han, J.: Clustered support vector machines. In: Proceedings of the Sixteenth International Conference on Artificial Intelligence and Statistics, AISTATS 2013, Scottsdale, AZ, USA, 29 April–1 May 2013, Volume 31 of JMLR Proceedings, pp. 307–315 (2013)

    Google Scholar 

  46. Do, T.-N.: Non-linear classification of massive datasets with a parallel algorithm of local support vector machines. In: Le Thi, H.A., Nguyen, N.T., Do, T.V. (eds.) Advanced Computational Methods for Knowledge Engineering. AISC, vol. 358, pp. 231–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17996-4_21

    Chapter  Google Scholar 

  47. Do, T.-N., Poulet, F.: Random local SVMs for classifying large datasets. In: Dang, T.K., Wagner, R., Küng, J., Thoai, N., Takizawa, M., Neuhold, E. (eds.) FDSE 2015. LNCS, vol. 9446, pp. 3–15. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26135-5_1

    Chapter  Google Scholar 

  48. Chang, F., Guo, C.Y., Lin, X.R., Lu, C.J.: Tree decomposition for large-scale SVM problems. J. Mach. Learn. Res. 11, 2935–2972 (2010)

    MathSciNet  MATH  Google Scholar 

  49. Chang, F., Liu, C.C.: Decision tree as an accelerator for support vector machines. In: Ding, X. (ed.) Advances in Character Recognition. InTech (2012)

    Google Scholar 

  50. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo (1993)

    Google Scholar 

  51. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.: Classification and Regression Trees. Wadsworth International, Kennett Square (1984)

    MATH  Google Scholar 

  52. Vincent, P., Bengio, Y.: K-local hyperplane and convex distance nearest neighbor algorithms. In: Advances in Neural Information Processing Systems, pp. 985–992. The MIT Press (2001)

    Google Scholar 

  53. Zhang, H., Berg, A., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2126–2136 (2006)

    Google Scholar 

  54. Yang, T., Kecman, V.: Adaptive local hyperplane classification. Neurocomputing 71(13–15), 3001–3004 (2008)

    Article  Google Scholar 

  55. Segata, N., Blanzieri, E.: Fast and scalable local kernel machines. J. Mach. Learn. Res. 11, 1883–1926 (2010)

    MathSciNet  MATH  Google Scholar 

  56. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In: Proceedings of the 23rd International Conference on Machine Learning, pp. 97–104. ACM (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Nghi Do .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Do, TN., Bui, LD. (2019). Parallel Learning Algorithms of Local Support Vector Regression for Dealing with Large Datasets. In: Hameurlain, A., Wagner, R., Dang, T. (eds) Transactions on Large-Scale Data- and Knowledge-Centered Systems XLI. Lecture Notes in Computer Science(), vol 11390. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-58808-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-58808-6_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-58807-9

  • Online ISBN: 978-3-662-58808-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics