Skip to main content

Part of the book series: Aspects of Mathematics ((ASMA,volume 18))

  • 587 Accesses

Abstract

The next class of objects we consider concerns one-dimensional varieties over the rational numbers, i.e. curves over ℚ. The simplest examples are the projective line ℝ and conics over ℚ. From the point of view of algebraic geometry these are equivalent objects and they are well understood. For our purposes we note that they are curves of genus zero and contain an infinite number of rational points (if any). More interesting are the elliptic curves over ℚ. These have been the subject of deep study from various points of view, algebraic, arithmetic and geometric. From the arithmetic point of view they give rise to some of the most intricate conjectures, the Birch & Swinnerton-Dyer Conjectures, which can be interpreted as the one-dimensional counterpart of Dedekind’s Class Number Formula. Also, more recently, a remarkable relation was found between elliptic curves and Fermat’s Last Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggestions for Further Reading

  1. S. Arakelov. An intersection theory for divisors on an arithmetic surface. Izv. Akad. Nauk. SSSR 38 (1974), pp. 1179–1192.

    MathSciNet  Google Scholar 

  2. S. Bloch. Higher regulators, algebraic K-theory, and zeta-functions of elliptic curves. Irvine Univ. (1978).

    Google Scholar 

  3. S. Bloch. A note on height pairings, Tamagawa numbers, and the Birch and Swinnerton-Dyer conjecture. Invent. Math. 58 (1980), pp. 65–76.

    Article  MathSciNet  MATH  Google Scholar 

  4. D. Bump, S. Friedberg, J. Hoffstein. A nonvanishing theorem for derivatives of automorphic L-functions with applications to elliptic curves. Bull. AMS 21 (1989), pp. 89–93.

    MathSciNet  MATH  Google Scholar 

  5. S. Bloch, K. Kato. L-Functions and Tamagawa Numbers of Motives. In: The Grothendieck Festschrift Volume I, edited by P. Cartier, L. Illusie, N. Katz, G. Laumon, Y. Manin, K. Ribet, Progress in Mathematics 86, Birkhäuser (1990), pp. 333–400.

    Google Scholar 

  6. J.-L. Brylinski. `1-motifs’ et formes automorphes (Théorie Arithmétique des Domaines de Siegel). In: Journées Automorphes, Edited by J. Arthur, J.-L. Brylinski, F. Rodier, D. Shelstad, Publications Mathématiques de l’Université Paris VII (1983), pp. 43–106.

    Google Scholar 

  7. J. Cremona. Algorithms for modular elliptic curves. Cambridge Univer- sity Press (1992).

    Google Scholar 

  8. J. Coates, A. Wiles. On the conjecture of Birch ê4 Swinnerton-Dyer. Invent. Math. 39 (1977), pp. 223–251.

    Article  MathSciNet  MATH  Google Scholar 

  9. P. Deligne. Théorie de Hodge III. Publ. Math. IHES 44 (1974), pp. 5–78.

    MathSciNet  MATH  Google Scholar 

  10. P. Deligne. Valeurs de fonctions L et périodes d’intégrales. In: Proc. Symp. Pure Math. 33 Part II, AMS (1979), pp. 313–346.

    Google Scholar 

  11. P. Deligne. La conjecture de Weil II. Publ. Math. IHES 52 (1980), pp. 137–252.

    MathSciNet  MATH  Google Scholar 

  12. P. Deligne. Le groupe fondamental de la droite projective moins trois points. In: Galois Groups over Q, Edited by Y. Ihara, K. Ribet, J.-P. Serre, Springer-Verlag (1989), pp. 79–297.

    Google Scholar 

  13. G. Faltings. Diophantine approximation on abelian varieties. Annals of Math. 133 (1991), pp. 549–576.

    Article  MathSciNet  MATH  Google Scholar 

  14. S. Fermigier. Un exemple de courbe elliptique définie surQ de rang 1 19. C. R. Acad. Sc. Paris, t. 315, Série I, p. 719–722, 1992.

    Google Scholar 

  15. G. Frey. Links between stable elliptic curves and certain Diophantine equations. Ann. Univ. Saraviensis, Ser. Math. 1 (1986), p. 1–40.

    MathSciNet  Google Scholar 

  16. B. Gross. Arithmetic on Elliptic Curves with Complex Multiplication. Lecture Notes in Math. 776 (1980), Springer-Verlag.

    Google Scholar 

  17. B. Gross. Kolyvagin’s work for modular elliptic curves. In: L-functions and Arithmetic, Editors: J. Coates, M. Taylor, London Math. Soc. Lect. Notes Series 153, Cambridge University Press (1991), pp. 235–256.

    Google Scholar 

  18. B. Gross, D. Zagier. Heegner points and derivatives of L-series. Invent. Math. 84 (1986), pp. 225–320.

    Article  MathSciNet  MATH  Google Scholar 

  19. D. Husemöller. Elliptic curves. Graduate Texts in Mathematics 111, Springer-Verlag (1987).

    Google Scholar 

  20. N. Koblitz. Introduction to Elliptic Curves and Modular Forms. Springer-Verlag (1984).

    Google Scholar 

  21. V. Kolyvagin. Finiteness of E(Q) and III(E/Q) for a subclass of Weil curves. Izv. Akad. Nauk SSSR Ser. Math. 52 (1988), pp. 522–540; English transl., Math USSR-Izv. 32 (1989), pp. 523–542.

    MathSciNet  MATH  Google Scholar 

  22. V. Kolyvagin. On the Mordell-Weil group and the Shafarevich-Tate group of Weil elliptic curves. Izv. Akad. Nauk SSSR Ser. Math. 52 (1988), pp. 1154–1180.

    Google Scholar 

  23. V. Kolyvagin. Euler systems. In: The Grothendieck Fest-schrift Volume II, Edited by P. Cartier, L. Illusie, N. Katz, G. Laumon, Y. Manin, K. Ribet, Progress in Mathematics 87, Birkhäuser (1990), pp. 435–483.

    Google Scholar 

  24. A. Knapp. Elliptic curves. Mathematical Notes 40. Princeton University Press (1992).

    Google Scholar 

  25. S. Lang. Elliptic Functions. Addison-Wesley Publishing Company, Inc. (1973).

    MATH  Google Scholar 

  26. S. Lang. Number Theory III. Encyclopaedia of Mathematical Sciences, Volume 60, Springer-Verlag (1991).

    Google Scholar 

  27. B. Mazur. Modular curves and the Eisenstein ideal. Publ. Math. IHES 47 (1977), pp. 33–186.

    MathSciNet  MATH  Google Scholar 

  28. J.-F. Mestre. Formules Explicites et Minorations de Conducteurs de Variétés Algébriques. Comp. Math. 58 (1986), pp. 209–232.

    MathSciNet  MATH  Google Scholar 

  29. J.-F. Mestre. Courbes elliptiques de rang 1 11 sur Q(t). C. R. Acad. Sc. Paris, t. 313, Série I, p. 139–142, 1991.

    Google Scholar 

  30. J.-F. Mestre. Courbes elliptiques de rang 1 12 sur Q(t). C. R. Acad. Sc. Paris, t. 313, Série I, p. 171–174, 1991.

    Google Scholar 

  31. J.-F. Mestre. Un exemple de courbe elliptique sur Q de rang 1 15. C. R. Acad. Sc. Paris, t. 314, Série I, p. 453–455, 1992.

    Google Scholar 

  32. J. Oesterlé. Nouvelles approches du “Theorème” de Fermat.Séminaire Bourbaki 694 (Février 1988), Astérisque 161–162, Société Mathématique de France (1989), pp. 165–186.

    Google Scholar 

  33. B. Perrin-Riou. Travaux de Kolyvagin et Rubin. Séminaire Bourbaki 717 (Novembre 1989), Astérisque 189–190, Société Mathématique de France (1990), pp. 69–106.

    Google Scholar 

  34. D. Ramakrishnan. Regulators, algebraic cyles, and values of L-functions. In: Contemp. Math. 83 AMS (1989), pp. 183–310.

    Google Scholar 

  35. K. Ribet. On modular representations of Gal(0/Q) arising from mod- ular forms. Invent. Math. 100 (1990), pp. 431–476.

    Article  MathSciNet  MATH  Google Scholar 

  36. D. Rohrlich. Elliptic curves and values of L-functions. CMS Proceedings Vol. 7 (1987), pp. 371–387.

    MathSciNet  Google Scholar 

  37. K. Rubin. Tate-Shafarevich groups and L-functions of elliptic curves with complex multiplication. Invent. Math. 89 (1987), pp. 527–560.

    Article  MathSciNet  MATH  Google Scholar 

  38. K. Rubin. Tate-Shafarevich Groups of Elliptic Curves with Complex Multiplication. In: Algebraic Number Theory (in honor of K.Iwasawa), Edited by J. Coates, R. Greenberg, B. Mazur and I. Satake, Academic Press (1989), pp. 409–419.

    Google Scholar 

  39. J.-P. Serre. Sur les représentations modulaires de degré 2 de Gal(Q/Q). Duke Math. J. 54 (1987), pp. 179–239.

    MATH  Google Scholar 

  40. G. Shimura. Introduction to the Arithmetic Theory of Automorphic Functions. Iwanami Shoten and Princeton University Press (1971).

    Google Scholar 

  41. G. Shimura, Y. Taniyama. Complex multiplication of abelian varieties,and its applications to number theory. The Mathematical Society of Japan (1961).

    Google Scholar 

  42. J.-P. Serre, J. Tate. Good reduction of abelian varieties. Ann. of Math. 88 (1968), pp. 492–517.

    MATH  Google Scholar 

  43. J. Tate. The arithmetic of elliptic curves. Invent. Math. 23 (1974), pp. 179–206.

    Article  MathSciNet  MATH  Google Scholar 

  44. J. Tate. Algorithm for determining the type of a singular fiber in an ellip-tic pencil. Lecture Notes in Math. 476 (1975), Springer-Verlag, pp. 3352.

    Google Scholar 

  45. F. Thaine. On the ideal class groups of real abelian number fields. Annals of Math. 128 (1988), pp. 1–18.

    Article  MathSciNet  MATH  Google Scholar 

  46. H. Tschöpe, H. Zimmer. Computation of the Néron-Tate height on elliptic curves. Math. Comp. (48) 177 (1987), pp. 351–370.

    Article  Google Scholar 

  47. P. Vojta. Siegel’s theorem in the compact case. Annals of Math. 133 (1991), pp. 509–548.

    Article  MathSciNet  MATH  Google Scholar 

  48. L. Washington. Number Fields and Elliptic Curves. In: Number Theory and Applications ( NATO ASI Series ), Edited by Richard A. Mollin, Kluwer Academic Publishers (1989), pp. 245–278.

    Google Scholar 

  49. A. Weil. Adèles and Algebraic Groups. IAS, Princeton (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Fachmedien Wiesbaden

About this chapter

Cite this chapter

Hulsbergen, W.W.J. (1994). The one-dimensional case: elliptic curves. In: Conjectures in Arithmetic Algebraic Geometry. Aspects of Mathematics, vol 18. Vieweg+Teubner Verlag, Wiesbaden. https://doi.org/10.1007/978-3-663-09505-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-663-09505-7_3

  • Publisher Name: Vieweg+Teubner Verlag, Wiesbaden

  • Print ISBN: 978-3-663-09507-1

  • Online ISBN: 978-3-663-09505-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics