Skip to main content

Part of the book series: CISM International Centre for Mechanical Sciences ((CISM,volume 516))

Abstract

We give several examples of modeling in nonlinear elasticity where a quasiconvexification procedure is needed. We first recall that the three-dimensional Saint Venant-Kirchhoff energy fails to be quasiconvex and that its quasiconvex envelope can be obtained by means of careful computations. Second, we turn to the mathematical derivation of slender structure models: an asymptotic procedure using T-convergence tools leads to models whose energy is quasiconvex by construction. Third, we construct an homogenized quasiconvex energy for square lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  • E. Acerbi and N. Fusco. Semicontinuity problems in the calculus of variations. Arch. Rational Mech. Anal, 86:125–145, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Acerbi, G. Buttazzo, and D. Percivale. A variational definition for the strain energy of an elastic string. J. Elasticity, 25:137–148, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  • R. Alicandro and M. Cicalese. A general integral representation result for continuum limits of discrete energies with superlinear growth. SIAM J. Math. Anal., 36:1–37, 2004.

    Article  MATH  MathSciNet  Google Scholar 

  • O. Anza Hafsa and J.-Ph. Mandallena. The nonlinear membrane model: Variational derivation under the constraint det ∇u ≠ 0. J. Maths Pures Appl, 86:100–115, 2006.

    MATH  MathSciNet  Google Scholar 

  • E. Attouch. Variational Convergence for Functions and Operators. Pitman, 1984.

    Google Scholar 

  • J.M. Ball. Convexity conditions and existence theorems in nonlinear elasticity. Arch. Rational Mech. Anal, 63:337–403, 1977.

    Article  MATH  Google Scholar 

  • M. Bousselsal and H. Le Dret. Relaxation of functionals involving homogeneous functions and invariance of envelopes. Chin. Ann. of Math., 23: 37–53, 2002.

    Article  MATH  Google Scholar 

  • A. Braides and M.S. Gelli. Continuum limits of discrete sytems without convexity hypotheses. Math. Mech. Solids, 7:41–66, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Caillerie, A. Mourad, and A. Raoult. Cell-to-muscle homogenization. Application to a constitutive law for the myocardium. Math. Model. Num. Anal, 37:681–698, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Caillerie, A. Mourad, and A. Raoult. Discrete homogenization in graphene sheet modeling. J. Elas., 84:33–68, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  • P.G. Ciarlet. Mathematical Elasticity. Vol I: Three-dimensional Elasticity. North-Holland, 1987.

    Google Scholar 

  • P.G. Ciarlet and Ph. Destuynder. A justification of the two-dimensional plate structure. J. Mécanique, 18:315–344, 1979.

    MATH  MathSciNet  Google Scholar 

  • B. Dacorogna. Direct Methods in the Calculus of Variations, 2nd edition. Springer, 2007.

    Google Scholar 

  • G. Dal Maso. An Introduction to Y-convergence. Birkäuser, 1993.

    Google Scholar 

  • E. De Giorgi and T. Franzoni. Su un tipo di convergenza variazionale. Atti. Accad. Naz. Lincei, 58:842–850, 1975.

    MATH  Google Scholar 

  • I. Ekeland and R. Temam. Analyse Convexe et Problèmes Variationnels. Dunod, 1974.

    Google Scholar 

  • I. Fonseca and S. Müller. A-quasiconvexity, lower semicontinuity and Young measures. SIAM J. Math. Anal, 30:1355–1390, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  • D. Fox, A. Raoult, and J.C. Simo. A justification of nonlinear properly invariant plate theories. Arch. Rational Mech. Anal., 124:157–199,1993.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Friesecke, R.D. James, and S. Müller. A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity. Comm. Pure Appl. Math., 55:1461–1506, 2002.

    Article  MATH  MathSciNet  Google Scholar 

  • E. Friesecke, R.D. James, and S. Müller. A hierarchy of plate models derived from nonlinear elasticity by γ-convergence. Arch. Rational Mech. Anal, 180:183–236, 2006.

    Article  MATH  Google Scholar 

  • H. Le Dret. Sur les fonctions de matrices convexes et isotropes. C.R. Acad. Sei. Paris, I, 310:617–620, 1990.

    MATH  Google Scholar 

  • H. Le Dret and A. Raoult. Variational convergence for nonlinear shell models with directors and related semicontinuity and relaxation results. Arch. Rational Mech. Anal, 154:101–134, 2000.

    Article  MATH  Google Scholar 

  • H. Le Dret and A. Raoult. Remarks on the quasiconvex envelope of stored energy functions in nonlinear elasticity. Comm. Applied Nonlinear An., 1:85–96, 1994.

    MATH  Google Scholar 

  • H. Le Dret and A. Raoult. The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl, 75: 551–580, 1995a.

    Google Scholar 

  • H. Le Dret and A. Raoult. The quasiconvex envelope of the Saint Venant-Kirchhoff stored energy function. Proc. Roy. Soc. Edinburgh, 125A:1179–1192, 1995b.

    MATH  Google Scholar 

  • H. Le Dret and A. Raoult. Quasiconvex envelopes of stored energy densities that are convex with respect to the strain tensor. In C. Bandle, J. Bemelmans, M. Chipot, J. Saint Jean Paulin, and I. Shafrir, editors, Progress in Partial Differential Equations. Pont-à-Mousson. 1994-Pitman, 1995c.

    Google Scholar 

  • C.B. Morrey. Quasiconvexity and the semicontinuity of multiple integrals. Pacific J. Math., 2:25–53, 1995.

    MathSciNet  Google Scholar 

  • A. Mourad. Description Topologique de l’Architecture Fibreuse et Modélisation Mécanique du Myocarde. Doctoral dissertation, Institut National Polytechnique de Grenoble, 2003.

    Google Scholar 

  • O. Pantz. Quelques Problèmes de Modélisation en Elasticité non Linéaire. Doctoral dissertation, Université Pierre et Marie Curie, 2001.

    Google Scholar 

  • A.C. Pipkin. Convexity conditions for strain-dependent energy functions for membranes. Arch. Rational Mech. Anal, 121:361–376, 1993.

    Article  MathSciNet  Google Scholar 

  • A.C. Pipkin. Relaxed energies for large deformations of membranes. IMA J. Appl. Math., 52:297–308, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  • A. Raoult. Non-polyconvexity of the stored energy function of a Saint Venant-Kirchhoff material. Aplikace Matematiky, 31:417–419, 1986.

    MATH  MathSciNet  Google Scholar 

  • V. Sverak. Rank-one convexity does not imply quasiconvexity. Proc. Roy. Soc. Edinburgh, 120A: 185–189, 1992.

    MATH  MathSciNet  Google Scholar 

  • R.C. Thompson and L.J. Freede. Eigenvalues of sums of hermitian matrices. J. Research Nat. Bur. Standards B, 75B:115–120, 1971.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 CISM, Udine

About this chapter

Cite this chapter

Raoult, A. (2010). Quasiconvex envelopes in nonlinear elasticity. In: Schröder, J., Neff, P. (eds) Poly-, Quasi- and Rank-One Convexity in Applied Mechanics. CISM International Centre for Mechanical Sciences, vol 516. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0174-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0174-2_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0173-5

  • Online ISBN: 978-3-7091-0174-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics