Skip to main content

Virus-host interaction for defence and transmission

  • Chapter
Congenital Cytomegalovirus Infection

Abstract

The classification of herpes viruses has recently been updated [1, http://www. ictvonline.org]. Morphologically, herpes viruses are distinct from all other viruses. A linear, double-stranded DNA genome of 125–290 kbp is contained within a T = 16 icosahedral capsid, which is surrounded by a proteinaceous matrix, dubbed the tegument, and then by a lipid envelope containing membrane-associated proteins. Genetically, herpes viruses fall into three distinct groupings that are related only tenuously to each other. These groupings consist of viruses of mammals, birds and reptiles, viruses of fish and frogs, and a single virus of bivalves [1]. In the order Herpesvirales, the cytomegalovirus (also named as the human herpes virus 5) belongs to the family of Herpesviridae and the subfamily of Betaherpesvirinae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davison AJ, Eberle R, Ehlers B, Hayward GS, McGeoch DJ, Minson AC, Peooett PE, Roizman B, Studdert MJ, Thiry E (2009) The order Herpesvirales. Arch Virol 154:171–177

    PubMed  CAS  Google Scholar 

  2. Mettenleiter TC, Klupp BG, Granzow H (2009) Herpesvirus assembly: An update. Virus Res 143:222–234

    PubMed  CAS  Google Scholar 

  3. Ho M (1991) Cytomegalovirus. Biology and infection. 2nd ed. Plenum Medical Book Company, New York London

    Google Scholar 

  4. Plachter B, Sinzger C, Jahn G (1996) Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 46:195–261

    PubMed  CAS  Google Scholar 

  5. Miller MS, Hertel L (2009) Onset of human cytomegalovirus replication in fibroblasts requires the presence of an intact vimentin cytoskeleton. J Virol 83(14):7015–7028

    PubMed  CAS  Google Scholar 

  6. Lyman MG, Enquist L (2009) Herpesvirus interactions with the host cytoskeleton. J Virol 83(5):2058–2066

    PubMed  CAS  Google Scholar 

  7. Sampaio KL, Cavignac Y, Stierhof YD, Sinzger C (2005) Human cytomegalovirus labeled with green fluorescent protein for live analysis of intracellular particle movements. J Virol 79(5):2754–2767

    PubMed  CAS  Google Scholar 

  8. Halwachs-Baumann G, Wilders-Truschnig M, Desoye G, Hahn T, Kiesel L, Klingel G, Rieger P, Jahn G, Sinzger C (1998) Human trophoblast cells are permissive to the complete replicative cycle of human cytomegalovirus. J Virol 72(9):7598–7602

    PubMed  CAS  Google Scholar 

  9. Grefte JMM, van der Giessen M, Blom N, The TH, van Son WJ (1995) Circulating cytomegalovirus-infected endothelial cells after renal transplantation: possible clue to pathophysiology? Transplant Proc 27(1):939–942

    PubMed  CAS  Google Scholar 

  10. Gibson W (1991) Cytomegalovirus protein structure and function. In: Landini MP (ed) Progress in cytomegalovirus research. Elsevier Science Publishers, Amsterdam New York, p45

    Google Scholar 

  11. Sinclair J (2009) Chromatin structure regulates human cytomegalovirus gene expression during latency, reactivation and lytic infection. Biochim Biophys Acta. DOI: 10.1016/j.bbagrm.2009.08.001

    Google Scholar 

  12. Sinclair J, Sissons P (2006) Latency and reactivation of human cytomegalovirus. J Gen Virol 87:1763–1779

    PubMed  CAS  Google Scholar 

  13. Baldanti F, Paolucci S, Campanini G, Sarasini A, Percivalle E, Revello MG, Gerna G (2006) Human cytomegalovirus UL131A, UL130 and UL128 genes are highly conserved among field isolates. Arch Virol 151:1225–1233

    PubMed  CAS  Google Scholar 

  14. Pignatelli S, Dal Monte P (2009) Epidemiology of human cytomegalovirus strains through comparison of methodological approaches to explore gN variants. N Microbiol 32:1–10

    CAS  Google Scholar 

  15. Sinzger C, Digel M, Jahn G (2008) Cytomegalovirus cell tropism. Curr Top Microbiol Immunol 325:63–83

    PubMed  CAS  Google Scholar 

  16. Bissinger AL, Sinzger C, Kaiserling E, Jahn G (2002) Human cytomegalovirus as a direct pathogen: Correlation of multiorgan involvement and cell distribution with clinical and pathological findings in an case of congenital inclusion disease. J Med Virol 67:200–206

    PubMed  CAS  Google Scholar 

  17. Sinzger C, Greefte A, Plachter B, Gouw ASH, The TH, Jahn G (1995) Fibroblasts, epithelial cells, endothelial cells and smooth muscle cells are major targets of human cytomegalovirus infection in lung and gastrointestinal tissues. J Gen Virol 76:741–750

    PubMed  CAS  Google Scholar 

  18. Tugizow S, Maidij E, Pereira L (1996) Role of apical and basolateral membranes in replication of human cytomegalovirus in polarized retinal pigment epithelial cells. J Gen Virol 77:61–74

    Google Scholar 

  19. Esclatine A, Lemullois M, Servin AL, Quero AM, Geniteau-Legendre M (2000) Human cytomegalovirus infects Caco-2 intestinal epithelial cells basolaterally regardless of the differentiation state. J Virol 74(1):513–517

    PubMed  CAS  Google Scholar 

  20. Ryckman BJ, Jarvis MA, Drummond DD, Nelson JA, Johnson DC (2006) Human cytomegalovirus entry into epithelial and endothelial cells depends on genes UL128 to UL150 and occurs by endocytosis and low-pH fusion. J Virol 80(2):710–722

    PubMed  CAS  Google Scholar 

  21. Ryckman BJ, Chase MC, Johnson DC (2008) HCMV gH/gL/UL128-131 interferes with virus entry into epithelial cells: evidence for cell type-specific receptors. Proc Nat Acad Sci 105(37):14118–14123

    PubMed  CAS  Google Scholar 

  22. Gerna G, Sarasini A, Patrone M, Percivalle E, Fiorina L, Campanini G, Gallina A, Baldanti F, Revello MG (2008) Human cytomegalovirus serum neutralizing antibodies block virus infection of endothelial/epithelial cells, but not fibroblast, early during primary infection. J Gen Virol 89:853–865

    PubMed  CAS  Google Scholar 

  23. Urban M, Klein M, Britt WJ, Haßfurther E, Mach M (1996) Glycoprotein H of human cytomegalovirus is a major antigen for the neutralizing humoral immune response. J Gen Virol 77:1537–1547

    PubMed  CAS  Google Scholar 

  24. Boeckh M, Boivin G (1998) Quantitation of cytomegalovirus: Methodologic aspects and clinical applications. Clin Microbiol Rev 11(3):533–554

    PubMed  CAS  Google Scholar 

  25. Ziyaeyan M, Sabahi F, Alborzi A, Ramzi M, Mahboudi F, Pourabbas B, Kadivar M (2008) Quantification of human cytomegalovirus DNA by a new capture hybrid polymerase chain reaction enzyme-linked immunosorbent assay in plasma and peripheral blood mononuclear cells of bone marrow transplant recipients. Exp Clin Transplant 6(4):294–300

    PubMed  Google Scholar 

  26. Preiser W, Brink NS, Ayliffe U, Peggs KS, Mackinnon S, Tedder RS, Garson JA (2003) Development and clinical application of a fully controlled quantitative PCR assay for cell-free cytomegalovirus in human plasma. J Clin Virol 26:49–59

    PubMed  CAS  Google Scholar 

  27. Hassan-Walker AF, Mattes FM, Griffiths PD, Emera VC (2001) Quantity of cytomegalovirus DNA in different leukocyte populations during active infection in vivo and the presence of gB and UL18 transcripts. J Med Virol 64:283–289

    PubMed  CAS  Google Scholar 

  28. Sinclair J (2008) Human cytomegalovirus: Latency and reactivation in the myeloid lineage. J Clin Virol 41:180–185

    PubMed  CAS  Google Scholar 

  29. Grefte JMM, van der Gun TF, Schmolke S, van der Giessen M, van Son WJ, Plachter B, Jahn G, The TH (1992) The lower matrix protein pp65 is the principal viral antigen present in peripheral blood leukocytes during an active cytomegalovirus infection. J Gen Virol 73:2923–2932

    PubMed  CAS  Google Scholar 

  30. Gerna G, Percivalle E, Baldanti F, Sozzani S, Lanzarini P, Genini E, Lilleri D, Revello MG (2000) Human cytomegalovirus replicates abortively in polymorphonuclear leukocytes after transfer from infected endothelial cells via transient microfusion events. J Virol 74(12):5629–5638

    PubMed  CAS  Google Scholar 

  31. Gerna G, Baldanti F, Revello G (2004) Pathogenesis of human cytomegalovirus infection and cellular targets. Hum Immunol 65:381–386

    PubMed  CAS  Google Scholar 

  32. Sinzger C, Bissinger AL, Viebahn R, Oettle H, Radke C, Schmidt CA, Jahn G (1999) Hepatocytes are permissive for human cytomegalovirus infection in human liver cell culture and in vivo. J Infect Dis 180:976–986

    PubMed  CAS  Google Scholar 

  33. Rollinger JM, Schmidtke M (2009) The human rhinovirus: human-pathological impact, mechanisms of antirhinoviral agents, and strategies for their discovery. Med Res Rev. DOI: 10.1002/med

    Google Scholar 

  34. Kim WM, Sigalov B (2008) Viral pathogenesis, modulation of immune receptor signalling and treatment. Adv Exp Med Biol 640:325–349

    PubMed  CAS  Google Scholar 

  35. Juckem LK, Boehme KW, Feire AL, Compton T (2008) Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol 180:4965–4977

    PubMed  CAS  Google Scholar 

  36. Campell AE, Cavanaugh VJ, Slater JS (2008) The salivary glands as a privileged site of cytomegalovirus immune evasion and persistence. Med Microbiol Immunol 197:205–213

    Google Scholar 

  37. Smith MG (1954) Propagation of salivary gland virus of the mouse in tissue cultures. Proc Soc Exp Biol Med 86:435–440

    PubMed  CAS  Google Scholar 

  38. Smith MG (1956) Propagation in tissue cultures of a cytopathogenic virus from human salivary gland virus (SGV) disease. Proc Soc Exp Biol Med 92:424–430

    PubMed  CAS  Google Scholar 

  39. Bahri R, Saidane-Mosbahi D, Rouabhia M (2010) Candida famata modulates toll-like receptor, ß-defensin, and proinflammatory cytokine expression by normal human epithelial cells. J Cell Physiol 222:209–218

    PubMed  CAS  Google Scholar 

  40. Rus H, Cudrici C, Niculescu F (2005) The role of the complement system in innate immunity. Immunol Res 33(2):103–112

    PubMed  CAS  Google Scholar 

  41. Miller-Kittrel M, Sparer TE (2009) Feeling manipulated: cytomegalovirus immune manipulation. Virol J 6(4). DOI: 10.1186/1743-422X-6-4

    Google Scholar 

  42. Gafa V, Manches O, Pastor a., Drouet E, Ambroise-Thomas P, Grillot R, Aldebert D (2005) Human cytomegalovirus downregulates complement receptors (CR3, CR4) and decreases phagocytosis by macrophages. J Med Virol 76:361–366

    PubMed  CAS  Google Scholar 

  43. Wilkinson GWG, Tomasec P, Stanton RJ, Armstrong M, Prod’homme V, Aicheler R, McSharry BP, Rickards CR, Cochrane D, Llewellyn-Lacey S, Wang ECY, Griffin CA, Davison AJ (2008) Modulation of natural killer cells by human cytomegalovirus. J Clin Virol 41:206–212

    PubMed  CAS  Google Scholar 

  44. Varani S, Frascaroli G, Landini MP, Söderberg-Naucler C (2009) Human cytomegalovirus targets different subsets of antigen-presenting cells with pathological consequences for host immunity: implications for immunosuppression, chronic inflammation and autoimmunity. Rev Med Virol 19:131–145

    PubMed  CAS  Google Scholar 

  45. Sinclair J (2008) Manipulation of dendritic cell function by human cytomegalovirus. Expert Rev Mol Med 10. DOI: 10.1017/S1462399408000872

    Google Scholar 

  46. Abbas AK, Lichtman AH, Pillai S (2007) Cellular and molecular immunology. 6th ed. Elsevier, Amsterdam New York

    Google Scholar 

  47. Rölle A (2009) Olweus J Dendritic cells in cytomegalovirus infection: viral evasion and host countermeasures. APMIS 117:413–426

    PubMed  Google Scholar 

  48. Mandron M, Martin H, Bonjean B, Lulé J, Tartour E, Davrinche C (2008) Dendritic cell-induced apoptosis of human cytomegalovirus-infected fibroblasts promotes cross-presentation of pp65 to CD8+ T cells. J Gen Virol 89:78–86

    PubMed  CAS  Google Scholar 

  49. Martin H, Mandron M, Davriche C (2008) Interplay between human cytomegalovirus and dendritic cells in T cell activation. Med Microbiol Immunol 197:179–184

    PubMed  Google Scholar 

  50. Gandhi MK, Khanna R (2004) Human cytomegalovirus: clinical aspects, immune regulation, and emerging treatments. Lancet Infect Dis 4:725–738

    PubMed  CAS  Google Scholar 

  51. Britt W (2008) Manifestations of human cytomegalovirus infection: Proposed mechanisms of acute and chronic disease. Curr Top Microbiol Immunol 325:417–470

    PubMed  CAS  Google Scholar 

  52. Froberg MK (2004) CMV escapes! Ann Clin Lab Sci 34:123–130

    PubMed  CAS  Google Scholar 

  53. Basta S, Bennink JR (2003) A survival game of hide and seek: cytomegaloviruses and MHC class I antigen presentation pathways. Viral Immunol 16:231–242

    PubMed  CAS  Google Scholar 

  54. Waller ECP, Day E, Sissons JGP, Wills MR (2008) Dynamics of T cell memory inhuman cytomegalovirus infection. Med Microbiol Immunol 197:83–96

    PubMed  Google Scholar 

  55. van Leeuwen EMM, de Bree GJ, ten Berge IJM, van Lier RAW (2006) Human virus-specific CD8+ T cells: diversity specialists. Immunol Rev 211:225–235

    PubMed  Google Scholar 

  56. Gerna G, Percivalle E, Lilleri D, Lozza L, Fornara C, Hahn G, Baldanti F, Revello MG (2005) Dendritic-cell infection by human cytomegalovirus is restricted to strains carrying functional UL 131-128 genes and mediates efficient viral antigen presentation to CD8+ T cells. J Gen Virol 86:275–284

    PubMed  CAS  Google Scholar 

  57. van de Berg PJEJ, van Stijn A, ten Berge IJM, van Lier RAW (2008) A fingerprint left by cytomegalovirus infection in the human T cell compartment. J Clin Virol 41:213–217

    PubMed  Google Scholar 

  58. Loenen WAM, Bruggeman CA, Wiertz EJHJ (2001) Immune evasion by human cytomegalovirus: lessons in immunology and cell biology. Immunol 13:41–49

    CAS  Google Scholar 

  59. Zhu J, Shearer GM, Marincola FM, Norman JE, Rott D, Zou J-P, Epstein SE (2001) Discordant cellular and humoral immune responses to cytomegalovirus infection in healthy blood donors: existence of a Th1-type dominant response. Int Immunol 13:785–790

    PubMed  CAS  Google Scholar 

  60. Pepperl S, Münster J, Mach M, Harris JR, Plachter B (2000) Dense bodies of human cytomegalovirus induce both humoral and cellular immune responses in the absence of viral gene expression. J Virol 74:6132–6146

    CAS  Google Scholar 

  61. Schoppel K, Kropff B, Schmidt C, Vornhagen R, Mach M (1997) The humoral immune response against human cytomegalovirus is characterized by a delayed synthesis of glycoprotein-specific antibodies. J Infect Dis 175:533–544

    PubMed  CAS  Google Scholar 

  62. Schoppel K, Schmidt C, Einsele H, Hebart H, Mach M (1998) Kinetics of the antibody response against human cytomegalovirus-specific proteins in allogeneic bone marrow transplant recipients. J Infect Dis 178:1233–1243

    PubMed  CAS  Google Scholar 

  63. Baccard-longere M, Freimuth F, Cointe D, Seigneurin JM, Grangeot-Keros L (2001) Multi-center evaluation of a rapid and convenient method for determination of cytomegalovirus immunoglobulin G avidity. Clin Diagn Lab Immunol 8:429–431

    PubMed  CAS  Google Scholar 

  64. Lazzarotto T, Spezzacatena P, Pradelli P, Abate DA, Varani S, Landini MP (1997) Avidity of immunoglobulin G directed against human cytomegalovirus during primary and secondary infections in immunocompetent and immunocompromised subjects. Clin Diagn Lab Immunol 4:469–473

    PubMed  CAS  Google Scholar 

  65. Lazzarotto T, Spezzacatena P, Varani S, Gabrielli L, Pradelli P, Guerra B, Landini MP (1999) Anticytomegalovirus (Anti-CMV) immunoglobulin G avidity in identification of pregnant women at risk of transmitting congenital CMV infection. Clin Diagn Lab Immunol 6:127–129

    PubMed  CAS  Google Scholar 

  66. van Zanten J, Harmsen MC, van der Giessen M, van der Bij W, Prop J, de Leij L, The TH (1995) Humoral immune response againsthuman cytomegalovirus (HCMV)-specific proteins after HCMV infection in lung transplantation as detected with recombinant and naturally occurring proteins. Clin Diagn Lab Immunol 2:214–218

    PubMed  Google Scholar 

  67. Shimamura M, Mach M, Britt WJ (2006) Human cytomegalovirus infection elicits a glycoprotein M (gM)/gN-specific virus-neutralizing antibody response. J Virol 80:4591–4600

    PubMed  CAS  Google Scholar 

  68. Ohta A, Fujita A, Murayama T, Iba Y, Kurosawa Y, Yoshikawa T, Asano Y (2009) Recombinant human monoclonal antibodies to human cytomegalovirus glycoprotein B neutralize virus in a complement-dependent manner. Microb Infect. DOI: 10.1016/j.micinf.2009.07.010

    Google Scholar 

  69. Britt WJ, Mach M (1996) Human cytomegalovirus glycoproteins. Intervirol 39:401–412

    CAS  Google Scholar 

  70. Schoppel K, Haßfurther E, Britt W, Ohlin M, Borrebaeck CAK, Mach M (1996) Antibodies specific for the antigenic domain 1 of glycoprotein B (gpUL55) of human cytomegalovirus bind to different substructures. Virology 216:133–145

    PubMed  CAS  Google Scholar 

  71. Klein M, Schoppel K, Amvrossiadis N, Mach M (1999) Strain-specific neutralization of human cytomegalovirus isolates by human sera. J Virol 73:878–886

    PubMed  CAS  Google Scholar 

  72. Cui X, Meza BP, Adler SP, McVoy MA (2008) Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. Vaccine 26:5760–5766

    PubMed  CAS  Google Scholar 

  73. Dörner T, Radbruch A (2007) Antibodies and B cell memory in viral immunity. Immun 27:384–392

    Google Scholar 

  74. Wirtz N, Schader SI, Holtappels R, Simon CO, Lemmermann NAW, Reddehase MJ, Podlech J (2008) Polyclonal cytomegalovirus-specific antibodies not only prevent virus dissemination from the portal of entry but also inhibit focal virus spread within target tissues. Med Microbiol Immunol 197:151–158

    PubMed  CAS  Google Scholar 

  75. Longo LD, Reynolds LP (2010) Some historical aspects of understanding placental development, structure and function. Int J Dev Biol 54:237–255

    PubMed  Google Scholar 

  76. Gambel P, Hunziker RD, Wegmann TG (1984) Reproductive immunology and the placental barrier hypothesis. Asian Pac Allergy Immunol 2(2):336–338

    CAS  Google Scholar 

  77. Beer AE, Sio JO (1982) Placenta as an immunological barrier. Biol Reprod 26:15–27

    PubMed  CAS  Google Scholar 

  78. Benirschke K, Kaufmann P (1995) Pathology of the human placenta. 3rd ed. Springer, New York

    Google Scholar 

  79. Fisher S, Genbacev O, Maidji E, Pereira L (2000) Human cytomegalovirus infection of placental cytotrophoblasts in vitro and in utero: Implications for transmission and pathogenesis. J Virol 74(15):6808–6820

    PubMed  CAS  Google Scholar 

  80. Maidji E, Percivalle E, Gerna G, Fisher S, Pereira L (2002) Transmission of human cytomegalovirus from infected uterine microvascular endothelial cells to differentiating/invasive placental cytotrophoblasts. Virol 304:53–69

    CAS  Google Scholar 

  81. Saji F, Samejima Y, Kamiura S, Koyama M (1999) Dynamics of immunoglobulins at the feto-maternal interface. Rev Reprod 4:81–89

    PubMed  CAS  Google Scholar 

  82. Radulescu L, Antohe F, Jinga V, Ghetie V, Simionescu M (2004) Neonatal Fc receptors discriminates and monitors the pathway of native and modified immunoglobulin G in placental endothelial cells. Human Immunol 65:578–585

    CAS  Google Scholar 

  83. Simister NE (2003) Placental transport of immunoglobulin G. Vaccine 21:3365–3369

    PubMed  CAS  Google Scholar 

  84. Kane SV, Acquah LA (2009) Placental transport of immunoglobulins: A clinical review for gastroenterologists who prescribe therapeutic monoclonal antibodies to women during conception and pregnancy. Am J Gastroenterol 104:228–233

    PubMed  CAS  Google Scholar 

  85. Szlauer R, Ellinger I, Haider S, Saleh L, Busch BL, Knöfler M, Fuchs R (2009) Functional expression of the human neonatal Fc-receptor, hFcRn, in isolated cultured human syncytiotrophoblasts. Placenta 30:507–515

    PubMed  CAS  Google Scholar 

  86. Leach JL, Sedmak DD, Osborne JM, Rahill B, Lairmore MD, Anderson CL (1996) Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast. J Immunol 157:3317–3322

    PubMed  CAS  Google Scholar 

  87. Ben-Hur H, Gurevich P, Elhayany A, Avinoach I, Schneider DF, Zusman I (2005) Transport of maternal immunoglobulins through the human placental barrier in normal pregnancy and during inflammation. Int J Mol Med 16:401–407

    CAS  Google Scholar 

  88. Englund JA (2007) The influence of maternal immunization on infant immune responses. J Comp Pathol 137:S16–S19

    PubMed  CAS  Google Scholar 

  89. Malek A (2003) Ex vivo human placenta models: transport of immunoglobulin G and its subclasses. Vaccine 21:3362–3364

    PubMed  CAS  Google Scholar 

  90. Simister NE (1998) Human placental Fc receptors and the trapping of immune complexes. Vaccine 16(14/15):1451–1455

    PubMed  CAS  Google Scholar 

  91. Moffett A, Loke YW (2004) The immunological paradox of pregnancy: A reappraisal. Placenta 25:1–8

    PubMed  CAS  Google Scholar 

  92. Rosenstein DL, Navarette-Reyna A (1964) Cytomegalic inclusion disease. Am J Obstet Gynecol 15:220–224

    Google Scholar 

  93. Cochard AM, Tan-Vinh L, Lelong M (1963) Le placenta dans la cytomegalie congenitale. Arch Fr Pédiatr 20:35–46

    PubMed  CAS  Google Scholar 

  94. Mostoufi-zadeh M, Driscoll SG, Biano SA, Kundsin RB (1984) Placental evidence of cytomegalovirus infection of the fetus and neonate. Arch Pathol Lab Med 108:403–406

    PubMed  CAS  Google Scholar 

  95. Benirschke K, Mendoza GR, Bazeley PL (1974) Placental and fetal manifestations of cytomegalovirus infection. Virchows Arch B Cell Pathol 16:121–139

    PubMed  CAS  Google Scholar 

  96. Monif GRG, Dische RM (1972) Viral placentitis in congenital cytomegalovirus infection. Am J Clin Pathol 58:445–449

    PubMed  CAS  Google Scholar 

  97. Altshuler G, McAdams AJ (1971) Cytomegalic inclusion disease of a nineteen-week fetus. Am J Obstet Gynecol 15:295–298

    Google Scholar 

  98. Mühlemann K, Miller RK, Metlay L, Menegus MA (1992) Cytomegalovirus infection of the human placenta: an immunocytochemical study. Hum Pathol 23(11): 1234–1237

    PubMed  Google Scholar 

  99. Sinzger C, Müntefering H, Löning T, Stöss H, Plachter B, Jahn G (1993) Cell types infected in human cytomegalovirus placentitis identified by immunohistochemical double staining. Virchows Arch A Pathol Anat 423:249–256

    CAS  Google Scholar 

  100. McDonagh S, Maidji E, Chang HT, Pereira L (2006) Patterns of human cytomegalovirus infection in term placentas: A preliminary analysis. J Clin Virol 35:210–215

    PubMed  CAS  Google Scholar 

  101. Mühlemann K, Menegus MA, Miller RK (1995) Cytomegalovirus in the perfused human term placenta in vitro. Placenta 16:367–373

    PubMed  Google Scholar 

  102. Rosenthal LJ, Panitz PJ, Crutchfield DB, Chou JY (1981) Cytomegalovirus replication in primary and passaged human placental cells. Intervirol 16:168–175

    CAS  Google Scholar 

  103. Hemmings DG, Kilani R, Nykiforuk C, Preiksaitis J, Guilbert LJ (1998) Permissive cytomegalovirus infection of primary villous term and first trimester trophoblasts. J Virol 72(6):4970–4979

    PubMed  CAS  Google Scholar 

  104. Hemmings DG, Guilbert LJ (2002) Polarized release of human cytomegalovirus from placental trophoblasts. J Virol 76(13):6710–6717

    PubMed  CAS  Google Scholar 

  105. Gabrielli L, Losi L, Varani S, Lazzarotto T, Eusebi V, Landini MP Complete replication of human cytomegalovirus in explants of first trimester human placenta. J Med Virol 2001: 64:499–504

    PubMed  CAS  Google Scholar 

  106. Garcia AGP, Fonseca EF, De Souza Marques RL, Lobato YY (1989) Placental morphology in cytomegalovirus infection. Placenta 10:1–18

    PubMed  CAS  Google Scholar 

  107. Parry S, Holder J, Strauss III JF (1997) Mechanisms of trophoblast-virus interaction. J Reprod Immunol 37:25–34

    PubMed  CAS  Google Scholar 

  108. Rassa JC, Ross SR (2003) Viruses and toll-like receptors. Microb Infect 5:961–968

    CAS  Google Scholar 

  109. Yagel S (2009) The developmental role of natural killer cells at the fetal-maternal interface. Am J Obstet Gynecol 201:344–350

    PubMed  CAS  Google Scholar 

  110. Xiao J, Barcia-Lloret M, Winkler-Lowen B, Miller R, Simpson K, Guilbert LJ (1997) ICAM-1-mediated adhesion of peripheral blood monocytes to the maternal surface of placental syncytiotrophoblasts. Am J Pathol 150(5):1845–1860

    PubMed  CAS  Google Scholar 

  111. Chan G, Stinski MF, Guilbert LJ (2004) Human cytomegalovirus-induced upregulation of intercellular cell adhesion molecule-1 on villous syncytiotrophoblasts. Biol Reprod 71:797–803

    PubMed  CAS  Google Scholar 

  112. Compton T, Kurt-Jones EA, Boehme KW, Belko J, Latz E, Golenbock DT, Finberg RW (2003) Human cytomegalovirus activates inflammatory cytokine responses via CD14 and toll-like receptor 2. J Virol 77(8):4588–4596

    PubMed  CAS  Google Scholar 

  113. Boehme KW, Guerrero M, Compton T (2006) Human cytomegalovirus envelope glycoprotein B and H are necessary for TLR2 activation in permissive cells. J Immunol 177:7094–7102

    PubMed  CAS  Google Scholar 

  114. Chaudhuri S, Lowen B, Chan G, DAvey A, Riddell M, Guilbert LJ (2009) Human cytomegalovirus interacts with toll-like receptor 2 and CD14 on syncytiotrophoblasts to stimulate expression of TNFα mRNA and apoptosis. Placenta 30:994–1001

    PubMed  CAS  Google Scholar 

  115. Chan G, Hemmings DG, Yurochko AD, Guilbert LJ (2002) Human cytomegalovirus-caused damage to placental trophoblasts mediated by immediate-early-gene-induced tumor necrosis factor-α. Am J Pathol 161(4):1371–1381

    PubMed  CAS  Google Scholar 

  116. Chan G, Guilbert LJ (2005) Enhanced monocyte binding to human cytomegalovirus-infected syncytiotrophoblast results in increased apoptosis via the release of tumour necrosis factor alpha. J Pathol 207:462–470

    PubMed  CAS  Google Scholar 

  117. Chan G, Guilbert LJ (2006) Ultraviolet-inactivated human cytomegalovirus induces placental syncytiotrophoblast apoptosis in a toll-like receptor-2 and tumour necrosis factor-α dependent manner. J Pathol 210:111–120

    PubMed  CAS  Google Scholar 

  118. Halwachs-Baumann G, Weihrauch G, Gruber HJ, Desoye G, Sinzger C (2006) hCMV induced IL-6 release in trophoblast and trophoblastlike cells. J Clin Virol 37:91–97

    PubMed  CAS  Google Scholar 

  119. Kovács IJ, Hegedüs K, Pál A, Pusztai R (2007) Production of proinflammatory cytokines by syncytiotrophoblasts infected with human cytomegalovirus isolates. Placenta 28:620–623

    PubMed  Google Scholar 

  120. Chou D, Ma Y, Zhang J, McGrath C, Parry S (2006) Cytomegalovirus infection of trophoblast cells elicits an inflammatory response: a possible mechanism of placental dysfunction. Am J Obstet Gynecol 194:535–541

    PubMed  CAS  Google Scholar 

  121. Bácsi A, Aranyosi J, Beck Z, Ebbesen P, Andirkó I, Szabo J, Lampé L, Kiss J, Gergely L, Tóth F (1999) Placental macrophage contact potentiates the complete replicative cycle of human cytomegalovirus in syncytiotrophoblast cells: role of interleukin-8 and transforming growth factor-β1. J Interferon Cytokine Res 19:1153–1160

    PubMed  Google Scholar 

  122. Tóth FD, Mosbor-Petersen P, Kiss J, Aboagye-Mathiesen G, Hager H, Juhl CB, Gergely L, Zdravkovic M, Aranyosi J, Lampe L, Ebbesen P (1995) Interaction between human immunodeficiency virus type 1 and human cytomegalovirus in human term syncytiotrophoblast cells coinfected with both viruses. J Virol 69(4):2223–2232

    PubMed  Google Scholar 

  123. Pereira L, Maidji E, McDonagh S, Genbacev O, Fisher S (2003) Human cytomegalovirus transmission from the uterus to the placenta correlates with the presence of pathogenic bacteria and maternal immunity. J Virol 77(24):13301–13314

    PubMed  CAS  Google Scholar 

  124. McDonagh S, Maidji E, Ma W, Chang HT, Fisher S, Pereira L (2004) Viral and bacterial pathogens at the maternal-fetal interface. J Infect Dis 190:826–834

    PubMed  Google Scholar 

  125. Andrews JI, Griffith TS, Meier JL (2007) Cytomegalovirus and the role of interferon in the expression of tumor necrosis factor-related apoptosis-inducing ligand in the placenta. Am J Obstet Gynecol 197:608.e1–608.e6

    Google Scholar 

  126. DeMeritt IB, Milford LE, Yurochko AD (2004) Activation of the NF-κB pathway in human cytomegalovirus-infected cells is necessary for efficient transactivation of the major immediate-early promoter. J Virol 78(9):4498–4507

    PubMed  CAS  Google Scholar 

  127. Prösch S, Staak K, Stein J, Liebenthal C, Stamminger T, Volk HD, Krüger DH (1995) Stimulation of the human cytomegalovirus IE enhancer/promoter in HL-60 cells by TNFα is mediated via induction of NF-κB. Virology 208:197–206

    PubMed  Google Scholar 

  128. DeMeritt IB, Podduturi JP, Tilley AM, Nogalski MT, Yurochko AD (2006) Prolonged activation of NF-κB by human cytomegalovirus promotes efficient viral replication and late gene expression. Virology 346:15–31

    PubMed  CAS  Google Scholar 

  129. Boehme KW, Singh J, Perry ST, Compton T (2004) Human cytomegalovirus elicits a coordinated cellular antiviral response via envelope glycoprotein B. J Virol 78(3): 1202–1211

    PubMed  CAS  Google Scholar 

  130. Juckem LK, Boehme KW, Feire AL, Compton T (2008) Differential initiation of innate immune responses induced by human cytomegalovirus entry into fibroblast cells. J Immunol 180:4965–4977

    PubMed  CAS  Google Scholar 

  131. Wang X, Huong SM, Chiu ML, Raab-Traub N, Huang ES (2003) Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nat 424:456–461

    CAS  Google Scholar 

  132. Isaacson MK, Feire AL, Compton T (2007) Epidermal growth factor receptor is not required for human cytomegalovirus entry or signalling. J Virol 81(12):6241–6247

    PubMed  CAS  Google Scholar 

  133. Compton T (2004) Receptors and immune sensors: the complex entry path of human cytomegalovirus. Trends Cell Biol 14(1):5–8

    PubMed  CAS  Google Scholar 

  134. Maidji E, Genbacev O, Chang HT, Pereira L (2007) Developmental regulation of human cytomegalovirus receptors in cytotrophoblasts correlates with distinct replication sites in the placenta. J Virol 81(9):4701–4712

    PubMed  CAS  Google Scholar 

  135. Tabata T, McDonagh S, Kawakatsu H, Pereira L (2007) Cytotrophoblasts infected with a pathogenic human cytomegalovirus strain dysregulate cell-matrix and cell-cell adhesion molecules: a quantitative analysis. Placenta 28:527–537

    PubMed  CAS  Google Scholar 

  136. Schleiss MR, Aronow BJ, Handwerger S (2007) Cytomegalovirus infection of human syncytiotrophoblast cells strongly interferes with expression of genes involved in placental differentiation and tissue integrity. Pediatr Res 61(5):565–571

    PubMed  CAS  Google Scholar 

  137. Rauwel B, Mariamé B, Martin H, Nielsen R, Allart S, Pipy B,. Mandrup S, Devignes MD, Evain-Brion D, Fournier T, Davrinche C (2010) Activation of PPARγ by human cytomegalovirus for de novo replication impairs migration and invasiveness of cytotrophoblast from early placenta. J Virol 84:2946–2954

    PubMed  CAS  Google Scholar 

  138. Roth I, Fisher SJ (1999) IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol 205:194–204

    PubMed  CAS  Google Scholar 

  139. Yamamoto-Tabata T, McDonagh S, Chang HT, Fisher S, Pereira L (2004) Human cytomegalovirus interleukin-10 downregulates metalloproteinase activity and impairs endothelial cell migration and placental cytotrophoblast invasiveness in vitro. J Virol 78(6):2831–2840

    PubMed  CAS  Google Scholar 

  140. LaMarca HL, Nelson AB, Scandurro AB, Whitley GStJ, Morris CA (2006) Human cytomegalovirus-induced inhibition of cytotrophoblast invasion in a first trimester extravillous cytotrophoblast cell line. Placenta 27:137–147

    PubMed  CAS  Google Scholar 

  141. Pereira L, Maidji E (2008) Cytomegalovirus infection in the human placenta: maternal immunity and developmentally regulated receptors on trophoblast converge. Curr Top Microbiol Immunol 325:383–395

    PubMed  CAS  Google Scholar 

  142. Schust DJ, Tortorella D, Seebach J, Phan C, Ploegh HL (1998) Trophoblast class I major histocompatibility complex (MHC) products are resistant to rapid degradation imposed by the human cytomegalovirus (HCMV) gene products US2 and US11. J Exp Med 188(3):497–503

    PubMed  CAS  Google Scholar 

  143. Huddleston H, Schust DJ (2004) Immune interactions at the maternal-fetal interface: a focus on antigen presentation. Am J Reprod Immunol 51:283–289

    PubMed  Google Scholar 

  144. Szekeres-Bartho J (2002) Immunological relationship between the mother and the fetus. Int Rev Immunol 21:471–495

    PubMed  CAS  Google Scholar 

  145. Schust DJ, Tortorella D, Ploegh HL (1999) Viral immunoevasive strategies and trophoblast class I major histocompatibility complex antigens. J Reprod Immunol 43:243–251

    PubMed  CAS  Google Scholar 

  146. Terauchi M, Koi H, Hayano C, Tayama-Sorimachi N, Karasuyama H, Yamanashi Y, Aso T, Shirakata M (2003) Placental extravillous cytotrophoblasts persistently express class I major histocompatibility complex molecules after human cytomegalovirus infection. J Virol 77(15):8187–8195

    PubMed  CAS  Google Scholar 

  147. Jun Y, Kim E, Jin M, Sung HC, Han H, Geraghty DE, Ahn K (2000) Human cytomegalovirus gene products US3 and US6 down-regulate trophoblast class I MHC molecules. J Immunol 164:805–811

    PubMed  CAS  Google Scholar 

  148. Nigro G, Adler SP, LaTorre R, Best AM (2005) Passive immunization during pregnancy for congenital cytomegalovirus infection. N Engl J Med 353:1350–1362

    PubMed  CAS  Google Scholar 

  149. Adler SP, Nigro G (2008) The importance of cytomegalovirus-specific antibodies for the prevention of fetal cytomegalovirus infection or disease. Herpes 15(2):24–27

    PubMed  Google Scholar 

  150. Mussi-Pinhata MM, Pinto PCG, Yamamoto AY, Berencsi K, de Souza CBS, Andrea M, Duarte G, Jorge SM (2003) Placental transfer of naturally acquired, maternal cytomegalovirus antibodies in term and preterm neonates. J Med Virol 69:232–239

    PubMed  Google Scholar 

  151. Nozawa N, Fan-Hoover J, Tabata T, Maidji E, Pereira L (2009) Cytomegalovirus-specific, high-avidity IgG with neutralizing activity in maternal circulation enriched in the fetal bloodstream. J Clin Virol 46(Suppl 4):S58–S63

    PubMed  CAS  Google Scholar 

  152. La Torre R, Nigro G, Mazzoco M, Best Al M, Adler SP (2006) Placental enlargement in women with primary maternal cytomegalovirus infection is associated with fetal and neonatal disease. Clin Infect Dis 43:994–1000

    PubMed  Google Scholar 

  153. Schleiss MR (2006) The role of the placenta in the pathogenesis of congenital cytomegalovirus infection: Is the benefit of cytomegalovirus immune globuline for the newborn mediated through improved placental health and function? Clin Infect Dis 43:1001–1003

    PubMed  Google Scholar 

  154. Pereira L, Maidji E, McDonagh S, Tabata T (2005) Insights into viral transmission at the uterine-placental interface. Trends Microbiol 13(4):164–174

    PubMed  CAS  Google Scholar 

  155. Maidji E, McDonagh S, Genbacev O, Tabata T (2006) Pereira L Maternal antibodies enhance or prevent cytomegalovirus infection in the placenta by neonatal Fc receptor-mediated transcytosis. Am J Pathol 168(4):1210–1226

    PubMed  CAS  Google Scholar 

  156. Mandel B (1969) Neutralization of viral infectivity: Characterization of the virus-antibody complex, including association, dissociation, and host-cell interaction. Ann N Y Acad Sci 13(83):515–527

    Google Scholar 

  157. Liu X, Ye L, Bai Y, Mojidi H, Simister NE, Zhu X (2008) Activation of the JAK/STAT-1 signalling pathway by IFN-γ can down-regulate functional expression of the MHC Class I-related neonatal Fc Receptor for IgG. J Immunol 181:449–463

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Halwachs-Baumann, G. (2011). Virus-host interaction for defence and transmission. In: Halwachs-Baumann, G. (eds) Congenital Cytomegalovirus Infection. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0208-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0208-4_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0207-7

  • Online ISBN: 978-3-7091-0208-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics