Skip to main content

Insights into translation initiation and termination complexes and into the polysome architecture

  • Chapter
Ribosomes

Abstract

Translation initiation is the most strongly regulated phase of protein synthesis during which the synthesis of a given protein is decided on. Initiation is the least conserved step of translation, since bacteria, archaea and eukarya have distinct and very different ways to initiate translation, and many different trans-acting factors are involved in the process. In bacteria, translation initiation comprises the consecutive formation of three major intermediary initiation complexes that are assembled via a multi-step process and that differ in composition and in conformation. At the end of the initiation process, an active 70S ribosomal initiation complex (70S IC) has formed which can enter peptide bond formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrawal RK, Heagle AB, Penczek P, Grassucci RA, Frank J (1999) EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat Struct Biol 6: 643–647

    Article  PubMed  CAS  Google Scholar 

  • Alekhina OM, Vassilenko KS, Spirin AS. (2007) Translation of non-capped mRNAs in a eukaryotic cell-free system: acceleration of initiation rate in the course of polysome formation. Nucleic Acids Res. 35:6547–6559

    Article  PubMed  CAS  Google Scholar 

  • Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J (2005) The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121: 703–712

    Article  PubMed  CAS  Google Scholar 

  • Biou V, Shu F, Ramakrishnan V (1995) X-ray crystallography shows that translational initiation factor IF3 consists of two compact a/b domains linked by an a-helix. EMBO J 14: 4056–4064

    PubMed  CAS  Google Scholar 

  • Boehringer D, Thermann R, Ostareck-Lederer A, Lewis JD, Stark H (2005) Structure of the hepatitis C virus IRES bound to the human 80S ribosome: remodelling of the HCV IRES. Structure 13: 1695–17064

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349: 117–127

    Article  PubMed  CAS  Google Scholar 

  • Brandt F, Etchells SA, Ortiz JO, Elcock AH, Hartl FU, Baumeister W (2009) The native 3D organization of bacterial polysomes. Cell 136: 261–271

    Article  PubMed  CAS  Google Scholar 

  • Brenner S, Stretton AO, Kaplan S (1965) Genetic code: the ‘nonsense’ triplets for chain termination and their suppression. Nature 206: 994–998

    Article  PubMed  CAS  Google Scholar 

  • Capecchi MR (1967) Polypeptide chain termination in vitro: isolation of a release factor. PNAS 58: 1144–1151

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Brodersen Jr DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498–501

    Article  PubMed  CAS  Google Scholar 

  • Caskey CT, Tompkins R, Scolnick E, Caryk T, Nirenberg M (1968) Sequential translation of trinucleotide codons for the initiation and termination of protein synthesis. Science 162: 135–138

    Article  PubMed  CAS  Google Scholar 

  • Cheng Z, Saito K, Pisarev AV, Wada M, Pisareva VP, Pestova TV, Gajda M, Round A, Kong C, Lim M, Nakamura Y, Svergun DI, Ito K, Song H (2009) Structural insights into eRF3 and stop codon recognition by eRF1. Genes Dev 23:1106–1118

    Article  PubMed  CAS  Google Scholar 

  • Christensen AK, Bourne CM (1999) Shape of large bound polysomes in cultured fibroblasts and thyroid epithelial cells. Anat Rec 255: 116–129

    Article  PubMed  CAS  Google Scholar 

  • Dallner G, Siekevitz P, Palade GE (1966) Biogenesis of endoplasmic reticulum membranes. II. Synthesis of constitutive microsomal enzymes in developing rat hepatocyte. J Cell Biol 30: 97–117

    Article  PubMed  CAS  Google Scholar 

  • Deana A, Belasco JG (2005) Lost in translation: the influence of ribosomes on bacterial mRNA decay. Genes Dev 19: 2526–2533

    Article  PubMed  CAS  Google Scholar 

  • de Smit MH, van Duin J (2003) Translational standby sites: how ribosomes may deal with the rapid folding kinetics of mRNA. J Mol Biol 331: 737–743

    Article  CAS  Google Scholar 

  • Dincbas-Renqvist V, Engström A, Mora L, Heurgué-Hamard V, Buckingham R, Ehrenberg M. (2000) A post-translational modification in the GGQ motif of RF2from Escherichia coli stimulates termination of translation. Embo J 19: 6900–6907

    Article  PubMed  CAS  Google Scholar 

  • Fabbretti A, Pon CL, Hennelly SP, Hill WE, Lodmell JS, Gualerzi CO (2000) Real-time dynamics of ribosome-ligand interaction by time-resolved chemical probing methods. Mol Cell 25: 285–296

    Article  CAS  Google Scholar 

  • Fortier PL, Schmitter JM, Garcia C, Dardel F (1994) The N-terminal half of initiation factor IF3 is folded as a stable independent domain. Biochimie 76: 376–383

    Article  PubMed  CAS  Google Scholar 

  • Freistroffer DV, Pavlov MY, MacDougall J, Buckingham RH, Ehrenberg M (1997) Release factors RF3 in E. coli accelerates the dissociation of release factors RF1 and RF2from the ribosome in a GTP-dependent manner. EMBO J 16: 4126–4133

    Article  PubMed  CAS  Google Scholar 

  • Frolova LY, Tsivkovskii RY, Sivolobova GF, Oparina NY, Serpinsky OI, Blinov VM, et al. ( 1999) Mutation in the highly conserved GGQ motif of class 1 polypeptide release factors abolish ability of human eRF1 to trigger peptidyl-tRNA hydrolysis. RNA 5: 1014–1020

    Article  PubMed  CAS  Google Scholar 

  • Frolova L, Seit-Nebi A, Kissev L (2002) Highly conserved NIKS tetrapeptide is functionally essential in eukaryotic translation termination factor eRF1. RNA 8: 129–136

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Zhou Z, Rawat U, Huang C, Bouakaz L, Wang C et al. (2007) RF3 induces ribosomal conformational changes responsible for dissociation of class I release factors. Cell 129: 929–941

    Article  PubMed  CAS  Google Scholar 

  • Gao YG, Selmer M, Dunham CM, Weixlbaumer A, Kelley AC, Ramakrishnan V (2009) The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326: 694–699

    Article  PubMed  CAS  Google Scholar 

  • Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F (1995) 1H and 15N resonance assignments and structure of the N-terminal domain of Escherichia coli initiation factor 3. J Mol Biol 228: 395–402

    CAS  Google Scholar 

  • Grentzmann G, Kelly PJ, Laalami S, Shuda M, Firpo MA, Cenatiempo Y, Kaji A (1998) Release factors RF-3 GTPase activity acts in disassembly of the ribosome termination complex. RNA 8: 973–983

    Article  Google Scholar 

  • Grigoriadou C, Marzi S, Pan D, Gualerzi CO, Cooperman BS (2007a) The translational fidelity function of IF3 during transition from the 30 S initiation complex to the 70 S initiation complex. J Mol Biol. 373: 551–561

    Article  PubMed  CAS  Google Scholar 

  • Grigoriadou C, Marzi S, Kirillov S, Gualerzi CO, Cooperman BS (2007b) A quantitative kinetic scheme for 70 S translation initiation complex formation. J Mol Biol 373: 562–572

    Article  PubMed  CAS  Google Scholar 

  • Grill S, Gualerzi CO, Londei P, Bläsi U (2000) Selective stimulation of translation of leaderless mRNA by initiation factor 2: evolutionary implications for translation. EMBO J 19: 4101–4110

    Article  PubMed  CAS  Google Scholar 

  • Gualerzi CO, Pon CL (1990) Initiation of mRNA translation in prokaryotes. Biochemistry 29: 5881–5889

    Article  PubMed  CAS  Google Scholar 

  • Guenneugues M, Caserta E, Brandi L, Spurio R, Meunier S, Pon CL, Boelens R, Gualerzi CO (2000) Mapping the fMet-tRNA(fMet) binding site of initiation factor IF2. EMBO J 19: 5233–5240

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Uno M, Nakamura Y (2000) A tripeptide ‘anticodon’ deciphers stop codons in messenger RNA. Nature 403: 680–684

    Article  PubMed  CAS  Google Scholar 

  • Jenner L, Romby P, Rees B, Schulze-Briese C, Springer M, Ehresmann C et al. (2005) Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 308: 120–123

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Kelly AC, Loakes D, Ramakrishnan V (2010) Structure of the 70S ribosome bound to release factor 2 and a substrate analog provides insights into catalysis of peptide release. Proc Natl Acad Sci USA 107: 8593–8598

    Article  PubMed  Google Scholar 

  • Kisselev L, Ehrenberg M, Frolova L (2003) Termination of translation: interplay of mRNA, rRNA and release factors? EMBO J 22: 175–182 (Review)

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP (2011) Molecular recognition and catalysis in translation termination complexes. Trends Biochem Sc., in press

    Google Scholar 

  • Klaholz BP, Pape T, Zavialov AV, Myasnikov AG, Orlova EV, Vestergaard B et al. (2003) Structure of the Escherichia coli ribosomal termination complex with release factor 2. Nature 421: 90–94

    Article  PubMed  CAS  Google Scholar 

  • Klaholz BP, Myasnikov AG, Van Heel M (2004) Visualization of release factor 3 on the ribosome during termination of protein synthesis. Nature 427: 862–865

    Article  PubMed  CAS  Google Scholar 

  • Kolb A, Hermoso JM, Thomas JO, Szer W (1977) Nucleic acid helix-unwinding properties of ribosomal protein S1 and the role of S1 in mRNA binding to ribosomes. Proc Natl Acad Sci USA 74: 2379–2383

    Article  PubMed  CAS  Google Scholar 

  • Konecki DS, Aune KC, Tate W, Caskey CT (1977) Characterization of reticulocyte release factor. J Biol Chem 252: 4514–11420

    PubMed  CAS  Google Scholar 

  • Kononenko AV, Dembo KA, Kiselev LL, Volkov W (2004) Molecular morphology of eukaryotic class I transaltion termination factor eRF1 in solution (in Russian). Mol Biol (Mosk) 38: 303–311

    Article  CAS  Google Scholar 

  • Kopeina GS, Afonina ZA, Gromova KV, Shirokov VA, Vasiliev VD, Spririn AS (2008) Step-wise formation of eukaryotic double-row polyribosomes and circular translation of polysomal mRNA. Nucleic Acids Res 36: 2476–2488

    Article  PubMed  CAS  Google Scholar 

  • Korostelev A, Asahara H, Lancaster L, Laurberg M, Hirschi A, Zhu J, Trakhanov S et al. (2008) Crystal structure of a translation termination complex formed with release factor RF2. Proc Natl Acad Sci USA 150: 19684–19689

    Article  Google Scholar 

  • Korostelev A, Zhu J, Asahara H, Noller HF (2010) Recognition of the amber UAG stop codon by release factor RF1. EMBO J [Epub ahead of print]

    Google Scholar 

  • Kuff EL, Hymer WC, Shelton E, Roberts NE (1966) The in vivo protein synthetic activities of free versus membrane-bound ribonucleoprotein in a plasma-cell tumor of the mouse. J Cell Biol 29: 63–75

    Article  PubMed  CAS  Google Scholar 

  • Kycia JH, Biou V, Shu F, Gerchman SE, Graziano V, Ramakrishnan V (1995) Prokaryotic translation initiation factor IF3 is an elongated protein consisting of two crystallisable domains. Biochemistry 34: 6183–6187

    Article  PubMed  CAS  Google Scholar 

  • La Teana A, Pon CL, Gualerzi CO (1996) Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. J Mol Biol 256: 667–675

    Article  Google Scholar 

  • Laursen BS, Mortensen KK, Sperling-Petersen HU, Hoffman DW (2003) A conserved structural motif at the N terminus of bacterial translation initiation factor IF2. J Biol Chem 278: 16320–16328

    Article  PubMed  CAS  Google Scholar 

  • Laurberg M, Kristensen O, Martemyanov K, Gudkoy AT, Nagaev I, Hughes D et al. (2000) Structure of a mutant EF-G reveals domain III and possibly the fusidic acid binding site. J Mol Biol 303: 593–603

    Article  PubMed  CAS  Google Scholar 

  • Laurberg M, Asahara H, Korostelev A, Zhu J, Trakhanov S, Noller HF (2008) Structural basis for translation termination on the 70S ribosome. Nature 454: 852–857

    Article  PubMed  CAS  Google Scholar 

  • Marzi S, Myasnikov AG, Serganov A, Ehresmann C, Romby P, Yusupov M et al. (2007) Structured mRNA regulate translation initiation by binding to the platform of the ribosome. Cell 130: 1019–1031

    Article  PubMed  CAS  Google Scholar 

  • Marzi S, Fechter P, Chevalier C, Romby P, Geissmann T (2008) RNA switches regulate initiation of translation in bacteria. Biol Chem 389: 585–589

    Article  PubMed  CAS  Google Scholar 

  • McCutcheon JP, Agrawal R. K., Philips S. M., Grassucci R. A., Gerchman S. E., Clemons W. M., Ramakrishnan V. and Frank J. (1999)) Location of translational initiation factor IF3 on the small ribosomal subunit. Proc. Natl. Acad. Sci. USA 96: 4301–4306

    Article  PubMed  CAS  Google Scholar 

  • Merkulova TI, Frolova LY, Lazar M, Camonis J, Kisselev LL (1999) C-terminal domains of human translation termination factors eRF1 and eRF3 mediate their in vivo interaction. FEBS Lett 443: 41–47

    Article  PubMed  CAS  Google Scholar 

  • Meunier S, Spurio R, Czisch M, Wechselberger R, Geunneugues M, Gualerzi CO, Boelens R (2000) Structure of the fMet-tRNAffMet-binding domain of B. stearothermophilus initiation factor IF2. EMBO J 19: 1918–1926

    Article  PubMed  CAS  Google Scholar 

  • Milon P, Konevega AL, Gualerzi CO, Rodnina MV (2008) Kinetic checkpoint at a late step in translation initiation. Mol Cell. 30: 712–720

    Article  PubMed  CAS  Google Scholar 

  • Mora L, Heurgué-Hamard V, Champ S, Ehrenberg M, Kisselev LL, Buckingham RH (2003) The essential role of the invariant GGQ motif in the function and stability in vivo of bacterial release factors RF1 and RF2. Mol Microbiol 47: 267–275

    Article  PubMed  CAS  Google Scholar 

  • Moreau M, de Cock E, Fortier PL, Garcia C, Albaret C, Blanquet S, Lallemand JY, Dardel F (1997) Heteronuclear NMR studies of E. coli translation initiation factor IF3. Evidence that the inter-domain region is disordered in solution. J Mol Biol 266: 15–22

    Article  PubMed  CAS  Google Scholar 

  • Myasnikov AG, Marzi S, Simonetti A, Giuliodori AM, Gualerzi CO, Yusupova G, Yusupov M, Klaholz BP (2005) Conformational transition of initiation factor 2from the GTP-to GDP-bound state visualized on the ribosome. Nat Struct Mol Biol 12: 1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Myasnikov AG, Simonetti A, Marzi S, Klaholz BP (2009) Structure-function insights into prokaryotic and eukaryotic translation initiation. Curr Opin Struct Biol 19: 300–309

    Article  PubMed  CAS  Google Scholar 

  • Nakamura Y, Ito K (2002) A tripeptide discriminator for stop codon recognition. FEBS Lett 514: 30–33

    Article  PubMed  CAS  Google Scholar 

  • Petrelli D, LaTeana A, Garofalo C, Spurio R, Pon CL, Gualerzi CO. (2001) Translation initiation factor IF3: two domains, five functions, one mechanism? EMBO J 20: 4560–4569

    Article  PubMed  CAS  Google Scholar 

  • Petry S, Brodersen DE, Murphy FV 4th, Dunham CM, Selmer M, Tarry MJ et al. (2005) Crystal structure of the ribosome in complex with release factors RF1 and RF2 bound to a cognate stop codon

    Google Scholar 

  • Philippe C, Eyermann F, Bénard L, Portier C, Ehresmann B, Ehresmann C. (1993) Ribosomal protein S15from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc Natl Acad Sci USA 15: 4394–4398

    Article  Google Scholar 

  • Rawat UB, Zavialov AV, Sengupta J, Valle M, Grassucci RA, Linde J et al. (2003) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Nature 421: 87–90

    Article  PubMed  CAS  Google Scholar 

  • Rawat U, Gao H, Zavialov A, Gursky R, Ehremberg M, Frank J (2006) Interactions of the release factor RF1with the ribosome as revealed by cryo-EM. J Mol Biol 357: 1144–1153

    Article  PubMed  CAS  Google Scholar 

  • Roll-Mecak A, Cao C, Dever TE, Burley SK (2000) X-ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding complex. Cell 103: 781–792

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Voorhees RM, Kelley AC, Gao YG, Murphy FV 4th, Weir JR et al. (2009) The crystal structure of the ribosome bound to EF-Tu and aminoacyl-tRNA. Science 326: 688–694

    Article  PubMed  CAS  Google Scholar 

  • Scolnick E, Tompkins R, Caskey CT, Nirenberg M (1968) Release factors differing in specificity for terminator codons. PNAS 61: 768–774

    Article  PubMed  CAS  Google Scholar 

  • Seit-Nebi A, Frolova L, Justesen J, Kisselev L (2001) Class-1 translation termination factors: GGQ minidomain is essential for release activity and ribosome binding but not for stop codon recognition. Nucleic Acids Res 29: 3982–3987

    PubMed  CAS  Google Scholar 

  • Sette M, van Tilborg P, Spurio R, Kaptein R, Paci M, Gualerzi CO, Boelens R. (1997) The structure of the translational initiation factor IF1 from E. coli contains an oligomer-binding motif. EMBO J 16: 1436–1443

    Article  PubMed  CAS  Google Scholar 

  • Shaw JJ, Green R (2007) Two distinct components of release factor function uncovered by nucleophile partitioning analysis. Mol Microbiol 47: 267–275

    Google Scholar 

  • Shin DH, Brandsen J, Jancarik J, Yokota H, Kim R, Kim SH (2004) Structural analyses of peptide release factor 1 from Thermotoga maritima reveal domain flexibility required for its interaction with the ribosome. J Mol Biol 341: 227–239

    Article  PubMed  CAS  Google Scholar 

  • Simonetti A, Marzi S, Myasnikov AG, Fabbretti A, Yusupov M, Gualerzi CO, Klaholz BP (2008) Structure of the 30S translation initiation complex. Nature 455: 416–420

    Article  PubMed  CAS  Google Scholar 

  • Simonetti A, Marzi S, Jenner L, Myasnikov AG, Romby P, Yusupova G, Klaholz BP, Yusupov M (2009) A structural view of translation initiation in bacteria. Cell Mol Life Sci 66: 423–436

    Article  PubMed  CAS  Google Scholar 

  • Song H, Mugnier P, Das AK, Webb HM, Evans DR, Tuite MF et al. (2000) The crystal structure of human eukaryotic release factor eRF1—mechanism of stop codon recognition and peptidyl-tRNA hydrolysis. Cell 100: 311–321

    Article  PubMed  CAS  Google Scholar 

  • Spahn CM, Kieft JS, Grassucci RA, Penczek PA, Zhou K, Doudna JA et al. (2001) Hepatitis C virus IRES RNA-induced changes in the conformation of the 40Ss ribosomal subunit. Science 291: 1959–1962

    Article  PubMed  CAS  Google Scholar 

  • Spahn CM, Jan E, Mulder A, Grassucci RA, Sarnow P, Frank J (2004) Cryo-EM visualization of a viral internal entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor. Science 118: 465–475

    CAS  Google Scholar 

  • Studer S. M. and Joseph S. (2006) Unfolding of mRNA secondary structure by the bacterial translation initiation complex. Mol Cell 22: 105–115

    Article  PubMed  CAS  Google Scholar 

  • Tarun SZ, Sachs AB (1995) A common function for mRNA 5′ and 3′ ends in translation initiation in yeast. Gene Develop 9: 2997–3007

    Article  CAS  Google Scholar 

  • Tate W, Greuer B, Brimacombe R (1990) Codon recognition in polypeptide chain termination: site directed crosslinking of termination codon to Escherichia coli release factor 2. Nucleic Acids Res 18: 6537–6544

    Article  PubMed  CAS  Google Scholar 

  • Tomsic J, Vitali LA, Daviter T, Savelsbergh A, Spurio R, Striebeck P, Wintermeyer W, Rodnina MV, Gualerzi CO. (2000) Late events of translation initiation in bacteria: a kinetic analysis. EMBO J 19: 2127–2136

    Article  PubMed  CAS  Google Scholar 

  • Trobro S, Aqvist J (2007) A model for how ribosomal release factors induce peptidyl-tRNA cleavage in termination of protein synthesis. Mol Cell 27: 758–766

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard B, Van LB, Andersen GR, Nyborg J, Buckingham RH, Kjeldgaard M (2001) Bacterial polypeptide release factor RF2 is structurally distinct from eukaryotic eRF1 Mol Cell 8: 1375–1372

    Article  PubMed  CAS  Google Scholar 

  • Vestergaard B, Sanyal S, Roessle M, Mora L, Buckingham RH, Kastrup JS et al. (2005) A cryo-electron microscopic study of ribosome-bound termination factor RF2. Mol Cell 20: 929–938

    Article  PubMed  CAS  Google Scholar 

  • Warner JR, Rich A, Hall CE (1962) Electron Microscope Studies of Ribosomal Clusters Synthesizing Hemoglobin. Science 138: 1399–1403

    Article  PubMed  CAS  Google Scholar 

  • Weixlbaumer A, Jin H, Neubauer C, Voorhees RM, Petry S, Kelly AC, Ramakrishnan V (2008) Insights into translational termination from the structure of RF2 bound to the ribosome. Science 322: 953–956

    Article  PubMed  CAS  Google Scholar 

  • Wienk H, Tomaselli S, Bernard C, Spurio R, Picone D, Gualerzi CO, Boelens R (2005) Solution structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2. Protein Sci 14: 2461–2468

    Article  PubMed  CAS  Google Scholar 

  • Wilson KS, Ito K, Noller HF, Nakamura Y (2000) Functional sites of interaction between release factor RF1 and the ribosome. Nat Struct Biol 7: 866–870

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, Brunelle JL, Kochaniak AB, Green R (2004) The active site of the ribosome is composed of two layers of conserved nucleotides with distinct role in peptide bound formation and peptide release. Cell 117: 589–599

    Article  PubMed  CAS  Google Scholar 

  • Youngman EM, He SL, Nikstad LJ, Green R (2007) Stop codon recognition by release factors induces structural rearrangement of the ribosomal decoding center that is productive for peptide release. Mol Cell 28: 533–543

    Article  PubMed  CAS  Google Scholar 

  • Yusupova, G. Z., Yusupov, M. M., Cate, J.H. and Noller, H. F. (2001) The path of the messenger RNA throught the ribosome. Cell 106: 233–241

    Article  PubMed  CAS  Google Scholar 

  • Yusupova, G., Jenner, L., Rees, B., Moras, D., and Yusupov, M. (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Zavialov AV, Buckingham RH, Ehrenberg M (2001) A posttermination ribosomal complex is the guanine nucleotide exchange factor for peptide release factor RF3. Cell 107: 115–124

    Article  PubMed  CAS  Google Scholar 

  • Zoldák G, Redecke L, Svergum DI, Konarev PV, Voertler CS, Dobbek H et al. (2007) Release factor 2from Thermus thermophilus: structural, spectroscopic and microcalorimetric studies. Nucleic Acids Res 35: 1343–1353

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Simonetti, A., Marzi, S., Myasnikov, A.G., Ménétret, JF., Klaholz, B.P. (2011). Insights into translation initiation and termination complexes and into the polysome architecture. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_10

Download citation

Publish with us

Policies and ethics