Skip to main content

Structure and function of organellar ribosomes as revealed by cryo-EM

  • Chapter
Ribosomes

Abstract

During the last decade ground-breaking progress was made in resolving the structure of ribosomes from several bacterial and archaeal species. A number of high-resolution X-ray crystallographic structures of bacterial ribosomes, complexes, and cryo-electron microscopic (cryo-EM) structures of both prokaryotic and eukaryotic cyto-plasmic ribosomes in various functional states were resolved. More recently, the first X-ray crystallographic structures of eukaryotic ribosomes, the yeast 80S ribosome (Ben-Shem et al. ,2010; also see chapter by Jenner and coworkers in this volume)and a protozoan 40S ribosomal subunit in complex with eukaryotic initiation factor 1 (Rabl et al., 2011)at ~4 Å resolution, have been obtained.Those studies have helped us tremendously in understanding some of the key functions of cytoplasmic ribosomes.Certain organelles of the cell, such as mitochondria and chloroplasts, have their own translational machineries,including ribosomes (Harris et al., 1994; O’Brien, 2002), for the synthesis of proteins that are involved primarily in oxidative phosphorylation and photosynthesis, respectively. Structural studies of organellar ribosomes have lagged behind studies of cyto plasmic ribosomes. In this article, we describe the current state of the structural information available for the organellar ribo somes, which was obtained by using the techniques of single-particle cryo-EM and three-dimensional image processing in our laboratory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ævarsson A, Brazhnikov E, Garber M, Zheltonosova J, Chirgadze Yu, Al-Karadaghi S, Svensson LA, Liljas A (1994) Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J 13: 3669–3677

    PubMed  Google Scholar 

  • Agrawal RK, Heagle AB, Penczek P, Grassucci RA, Frank J (1999) Elongation factor-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nature Struct Biol 6: 643–647

    Article  PubMed  CAS  Google Scholar 

  • Agrawal RK, Spahn CM, Penczek P, Grassucci RA, Nierhaus KH, Frank J (2000) Visualization of tRNA movements on the Escherichia coli 70S ribosome during the elongation cycle. J Cell Biol 150: 447–460

    Article  PubMed  CAS  Google Scholar 

  • Allen GS, Zavialov A, Gursky R, Ehrenberg M, Frank J (2005) The cryo-EM structure of a translation initiation complex from Escherichia coli. Cell 121: 703–712

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, de Brujin M, Coulson A, Eperon I, Sanger F, Young I (1982) Complete sequence of bovine mitochondrial DNA: Conserved features of the mammalian mitochondrial genome. J Mol Biol 156: 683–717

    Article  PubMed  CAS  Google Scholar 

  • Attardi G (1985) Animal mitochondrial DNA: an extreme example of genetic economy. Int Rev Cytol 93: 93–145

    Article  PubMed  CAS  Google Scholar 

  • Beckmann R, Spahn CM, Eswar N, Helmers J, Penczek PA, Sali A, Frank J, Blobel G (2001) Architecture of the protein-conducting channel associated with the translating 80S ribosome. Cell 107: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Ben-Shem A, Jenner L, Yusupova G, Yusupov M (2010) Crystal structure of the eukaryotic ribosome. Science 330: 1203–1209

    Article  PubMed  CAS  Google Scholar 

  • Bhargava K, Templeton PD, Spremulli LL (2004) Expression and characterization of isoform 1 of human mitochondrial elongation factor G. Protein Exp & Purifi 37: 368–376

    Article  CAS  Google Scholar 

  • Biou V, Shu F, Ramakrishnan V (1995) X-ray crystallography shows that translational initiation factor IF3 consists of two compact alpha/beta domains linked by an alpha-helix. EMBO J 14: 4056–4064

    PubMed  CAS  Google Scholar 

  • Brock S, Szkaradkiewicz K, Sprinzl M (1998) Initiation factors of protein biosynthesis in bacteria and their structural relationship to elongation and termination factors. Mol Microbiol 29: 409–417

    Article  PubMed  CAS  Google Scholar 

  • Carter AP, Clemons WM, Jr. Brodersen DE, Morgan-Warren RJ, Hartsch T, Wimberly BT, Ramakrishnan V (2001) Crystal structure of an initiation factor bound to the 30S ribosomal subunit. Science 291: 498–501

    Article  PubMed  CAS  Google Scholar 

  • Chomyn A, Cleeter MW, Ragan CI, Riley M, Doolittle RF, Attardi G (1986) URF6, last unidentified reading frame of human mtDNA, codes for an NADH dehydrogenase subunit. Science 234: 614–618

    Article  PubMed  CAS  Google Scholar 

  • Czworkowski J, Wang J, Steitz TA, Moore PB (1994) The crystal structure of elongation factor G complexed with GDP, at 2.7Å. EMBO J 13: 3661–3668

    PubMed  CAS  Google Scholar 

  • de la Cruz VF, Lake JA, Simpson AM, Simpson L (1985) A minimal ribosomal RNA: Sequence and secondary structure of the 9S kinetoplast ribosomal RNA from Leishmania tarentolae. Proc Natl Acad Sci USA 82: 1401–1405

    Article  Google Scholar 

  • de la Cruz VF, Simpson AM, Lake JA, Simpson L (1985a) Primary sequence and partial secondary structure of the 12S kinetoplast (mitochondrial) ribosomal RNA from Leishmania tarentolae: Conservation of peptidyl-transferase structural elements. Nucl Acids Res 13: 2337–2356

    Article  PubMed  Google Scholar 

  • Eberly SL, Locklear V, Spremulli LL (1985) Bovine mitochondrial ribosomes. Elongation factor specificity. J Biol Chem 260: 8721–8725

    PubMed  CAS  Google Scholar 

  • Frank J, Agrawal RK (2000) A ratchet-like inter-subunit reorganization of ribosome during translocation. Nature 406: 318–322

    Article  PubMed  CAS  Google Scholar 

  • Frank J, Zhu J, Penczek P, Li Y, Srivastava S, Verschoor A, Radermacher M, Grassucci R, Lata KR, Agrawal RK (1995) A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376: 441–444

    Article  PubMed  CAS  Google Scholar 

  • Gabashvili IS, Agrawal RK, Spahn CM, Grassucci R, Svergun D, Frank J, Penczek P (2000) Solution structure of the E. coli 70S ribosome at 11.5 Å resolution. Cell 100: 537–549

    Article  PubMed  CAS  Google Scholar 

  • Gabashvili IS, Gregory ST, Valle M, Grassucci R, Worbs M, Wahl MC, Dahlberg AE, Frank J (2001) The polypeptide tunnel system in the ribosome and its gating in erythromycin resistance mutants of L4 and L22. Mol Cell 8: 181–188

    Article  PubMed  CAS  Google Scholar 

  • Garcia C, Fortier PL, Blanquet S, Lallemand JY, Dardel F (1995) Solution structure of the ribosome-binding domain of E. coli translation initiation factor IF3. Homology with the U1A protein of the eukaryotic spliceosome. J Mol Biol 254: 247–259

    Article  PubMed  CAS  Google Scholar 

  • Gaur R, Grasso D, Datta PP, Krishna PD, Das G, Spencer A, Agrawal RK, Spremulli L, Varshney U (2008) A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol Cell 29: 180–190

    Article  PubMed  CAS  Google Scholar 

  • Gray MW, Burger G, Lang BF (2001) The origin and early evolution of mitochondria. Genome Biol 2: 1018.1–1018.5

    Article  Google Scholar 

  • Hammarsund M, Wilson W, Corcoran M, Merup M, Einhorn S, Grander D, Sangfelt O (2001) Identification and characterization of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution. Hum Genet 109: 542–550

    Article  PubMed  CAS  Google Scholar 

  • Haque ME, Spremulli LL (2008) Roles of the N-and C-terminal domains of mammalian mitochondrial initiation factor 3 in protein biosynthesis. J Mol Biol 384: 929–940

    Article  PubMed  CAS  Google Scholar 

  • Haque ME, Grasso D, Spremulli LL (2008) The interaction of mammalian mitochondrial translational initiation factor 3 with ribosomes: evolution of terminal extensions in IF3mt. Nucleic Acids Res 36: 589–597

    Article  PubMed  CAS  Google Scholar 

  • Harris EH, Boynton JE, Gillham NW (1994) Chloroplast ribosomes and protein synthesis. Microbiol Rev 58: 700–754

    PubMed  CAS  Google Scholar 

  • Jenner L, Demeshkina N, Yusupova G, Yusupov M (2010) Structural rearrangements of the ribosome at the tRNA proofreading step. Nat Struct Mol Biol 17: 1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Jia L, Kaur J, Stuart RA (2009) Mapping of the Saccharomyces cerevisiae Oxa1-mitochondrial ribosome interface and identification of MrpL40, a ribosomal protein in close proximity to Oxa1 and critical for oxidative phosphorylation complex assembly. Eukaryot Cell 8: 1792–1802

    Article  PubMed  CAS  Google Scholar 

  • Koc EC, Spremulli LL (2002) Identification of mammalian mitochondrial translational initiation factor 3 and examination of its role in initiation complex formation with natural mRNAs. J Biol Chem 277: 35541–35549

    Article  PubMed  CAS  Google Scholar 

  • Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL (2001) The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J Biol Chem 276:43958–43969

    Article  PubMed  CAS  Google Scholar 

  • Koc EC, Haque ME, Spremulli LL (2010) Current views of the structure of the mammalian mitochondrial ribosome. Israel J Chem 50:45–59

    Article  CAS  Google Scholar 

  • Lee JH, Choi SK, Roll-Mecak A, Burley SK, Dever TE (1999) Universal conservation in translation initiation revealed by human and archaeal homologs of bacterial translation initiation factor IF2. Proc Natl Acad Sci USA 96:4342–4347

    Article  PubMed  CAS  Google Scholar 

  • Liao HX, Spremulli LL (1990) Identification and initial characterization of translational initiation factor 2from bovine mitochondria. J Biol Chem 265: 13618–13622

    PubMed  CAS  Google Scholar 

  • Liao HX, Spremulli LL (1991) Initiation of protein synthesis in animal mitochondria: Purification and characterization of translational initiation factor 2. J Biol Chem 266: 20714–20719

    PubMed  CAS  Google Scholar 

  • Ma L, Spremulli LL (1995) Cloning and sequence analysis of the human mitochondrial translational initiation factor 2 cDNA. J Biol Chem 270: 1859–1865

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Spremulli LL (1996) Expression, purification and mechanistic studies of bovine mitochondrial translational initiation factor 2. J Biol Chem 271: 5805–5811

    Article  PubMed  CAS  Google Scholar 

  • Ma J, Farwell M, Burkhart W, Spremulli LL (1995) Cloning and sequence analysis of the cDNA for bovine mitochondrial translational initiation factor 2. Biochim Biophys Acta 1261: 321–324

    Article  PubMed  Google Scholar 

  • Margulis L (1970) Origin of Eukaryotic Cells. Yale Univ. Press, New Haven

    Google Scholar 

  • Maslov DA, Sharma MR, Butler E, Falick AM, Gingery M, Agrawal RK, Spremulli LL, Simpson L (2006) Isolation and characterization of mitochondrial ribosomes and ribosomal subunits from Leishmania tarentolae. Mol Biochem Parasitol 148: 69–78

    Article  PubMed  CAS  Google Scholar 

  • Maslov DA, Spremulli LL, Sharma MR, Bhargava K, Grasso D, Falick AM, Agrawal RK, Parker CE, Simpson L (2007) Proteomics and electron microscopic characterization of the unusual mitochondrial ribosome-related 45S complex in Leishmania tarentolae. Mol Biochem Parasitol 152: 203–212

    Article  PubMed  CAS  Google Scholar 

  • Mears JA, Sharma MR, Gutell RR, McCook AS, Richardson PE, Caulfield TR, Agrawal RK, Harvey SC (2006) A structural model for the large subunit of the mammalian mitochondrial ribosome. J Mol Biol 358: 193–212

    Article  PubMed  CAS  Google Scholar 

  • Moazed D, Samaha RR, Gualerzi C, Noller HF (1995) Specific protection of 16S rRNA by translational initiation factors. J Mol Biol 248: 207–210

    PubMed  CAS  Google Scholar 

  • Montoya J, Ojala D, Attardi G (1981) Distinctive features of the 5′-terminal sequences of the human mitochondrial mRNAs. Nature 290: 465–470

    Article  PubMed  CAS  Google Scholar 

  • Moreno JMP, Kildsgaard J, Siwanowicz I, Mortensen KK, Sperling-Petersen HU (1998) Binding of E. coli initiation factor IF2 to 30S ribosomal subunits: a functional role for the N-terminus of the factor. Biochem Biophys Res Comm 252: 465–471

    Article  PubMed  CAS  Google Scholar 

  • Moreno JMP, Dyrskjøtersen L, Kristensen J, Mortensen K, Sperling-Petersen, H (1999) Characterization of the domains of E. coli initiation factor IF2 responsible for recognition of the ribosome. FEBS Lett 455: 130–134

    Article  PubMed  CAS  Google Scholar 

  • Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289: 920–930

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TW (1971) The general occurrence of 55 S ribosomes in mammalian liver mitochondria. J Biol Chem 246: 3409–3417

    CAS  Google Scholar 

  • O’Brien TW (2002) Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286: 73–79

    Article  CAS  Google Scholar 

  • Rabl J, Leibundgut M, Ataide SF, Haag A, Ban N (2011) Crystal structure of the eukaryotic 40S ribosomal subunit in complex with initiation factor 1. Science 331:730–736

    Article  PubMed  CAS  Google Scholar 

  • Roll-Mecak A, Cao C, Dever TE, Burley SK (2000) X-Ray structures of the universal translation initiation factor IF2/eIF5B: conformational changes on GDP and GTP binding. Cell 103: 781–792

    Article  PubMed  CAS  Google Scholar 

  • Schmeing TM, Ramakrishnan V (2009) What recent ribosome structures have revealed about the mechanism of translation. Nature 461: 1234–1242

    Article  PubMed  CAS  Google Scholar 

  • Schmitz-Linneweber C, Maier RM, Alcaraz JP, Cottet A, Herrmann RG, Mache R (2001) The plastid chromosome of spinach (Spinacia oleracea): complete nucleotide sequence and gene organization. Plant Mol Biol 45: 307–315

    Article  PubMed  CAS  Google Scholar 

  • Schuwirth BS, Borovinskaya MA, Hau CW, Zhang W, Vila-Sanjurjo A, Holton JM, Cate JH (2005) Structures of the bacterial ribosome at 3.5 Å resolution. Science 310: 827–834

    Article  PubMed  CAS  Google Scholar 

  • Selmer M, Dunham CM, Murphy FV 4 th, Weixlbaumer A, Petry S, Kelley AC, Weir JR, Ramakrishnan V (2006) Structure of the 70S ribosome complexed with mRNA and tRNA. Science 313: 1935–1942

    Article  PubMed  CAS  Google Scholar 

  • Sharma MR, Koc EC, Datta PP, Booth, TM, Spremulli LL, Agrawal RK (2003) Structure of the mammalian mitochondrial ribosomes reveals an expanded role for its component proteins. Cell 115: 97–108

    Article  PubMed  CAS  Google Scholar 

  • Sharma MR, Wilson DN, Datta PP, Barat C, Schluenzen F, Fucini P, Agrawal RK (2007) Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci USA 104:19315–19320

    Article  PubMed  Google Scholar 

  • Sharma MR, Booth TM, Simpson L, Maslov DA, Agrawal RK (2009) Structure of a mitochondrial ribosome with minimal RNA. Proc Natl Acad Sci USA 106: 9637–9642

    Article  PubMed  Google Scholar 

  • Sharma MR, Dönhöfer A, Barat C, Marquez V, Datta PP, Fucini P, Wilson DN, Agrawal RK (2010) PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EF-G). J Biol Chem 285: 4006–4014

    Article  PubMed  CAS  Google Scholar 

  • Spencer AC, Spremulli LL (2005) The interaction of mitochondrial translational initiation factor 2 with the small ribosomal subunit. Biochim Biophys Acta 1750: 69–81

    Article  PubMed  CAS  Google Scholar 

  • Spremulli LL, Coursey A, Navratil T, Hunter SE (2004) Initiation and elongation factors in mammalian mitochondrial protein biosynthesis. Prog Nucleic Acid Res Mol Biol 77: 211–261

    Article  PubMed  CAS  Google Scholar 

  • Steinberg S, Cedergren R (1994) Structural compensation in atypical mitochondrial tRNAs. Nat Struct Biol 1: 507–510

    Article  PubMed  CAS  Google Scholar 

  • Steinberg S, Gautheret D, Cedergren R (1994) Fitting the structurally diverse animal mitochondrial tRNAsSer to common three-dimensional constraints. J Mol Biol 236: 982–989

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T, Terasaki M, Takemoto-Hori C, Hanada T, Ueda T, Wada A, Watanabe K (2001) Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J Biol Chem 276:21724–21736

    PubMed  CAS  Google Scholar 

  • Temperley RJ, Wydro M, Lightowlers RN, Chrzanowska-Lightowlers ZM (2010) Human mitochondrial mRNAs-like members of all families, similar but different. Biochim Biophys Acta 1797: 1081–1085

    Article  PubMed  CAS  Google Scholar 

  • Tsuboi M, Morita H, Nozaki Y, Akama K, Ueda T, Ito K, Nierhaus KH, Takeuchi N (2009) EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol Cell 35: 502–510

    Article  PubMed  CAS  Google Scholar 

  • Valle M, Zavialov A, Sengupta J, Rawat U, Ehrenberg M, Frank J (2003) Locking and unlocking of ribosomal motions. Cell 114: 123–134

    Article  PubMed  CAS  Google Scholar 

  • Vickerman K, Preston TM (1976) Comparative Cell Biology of the Kinetoplastid Flagellates. In: Lumsden WHR, Evans DA (eds) Biology of the Kinetoplastida. Academic Press, London, pp 35–130

    Google Scholar 

  • Vila-Sanjurjo A, Schuwirth BS, Hau CW, Cate JHD (2004) Structural basis for the control of translation initiation during stress. Nat Struct Mol Biol 11: 1054–1059

    Article  PubMed  CAS  Google Scholar 

  • Watanabe Y-I, Kawai G, Yokogawa T, Hayashi N, Kumazawa Y, Ueda T, Nishikawa K, Hirao I, Miura K-I, Watanabe K (1994) Higher-order structure of bovine mitochondrial tRNAser UGA: chemical modification and computer modeling. Nucleic Acids Res 22: 347–353

    Article  PubMed  Google Scholar 

  • Wimberly BT, Brodersen DE, Clemons WM, Morgan-Warren RJ, Carter AP, Vonrhein C, Hartsch T, Ramakrishnan VR (2000) Structure of the 30S ribosomal subunit. Nature 407: 327–339

    Article  PubMed  CAS  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu AM, Connelly C, Davis K et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906

    Article  PubMed  CAS  Google Scholar 

  • Wittmann-Liebold B (1985) Ribosomal proteins: their structure and evolution, In: Hardesty B, Krame G (eds) Structure, Function, and Genetics of Ribosomes, Springer, New York, pp 326–361

    Google Scholar 

  • Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 50 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275: 28466–28482

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, Subramanian AR (2003) Proteomic identification of all plastid-specific ribosomal proteins in higher plant chloroplast 30S ribosomal subunit. Eur J Biochem 270: 190–205

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins. Identification of all the proteins in the 30 S subunit of an organelle ribosome (chloroplast). J Biol Chem 275: 28455–28465

    Article  PubMed  CAS  Google Scholar 

  • Yassin AS, Haque ME, Datta PP, Elmore K, Banavali NK, Spremulli LL, Agrawal RK (2011) Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1. Proc Natl Acad Sci USA 108: 3918–3923

    Article  PubMed  Google Scholar 

  • Yokogawa T, Watanabe YI, Kumazawa Y, Ueda T, Hirao I, Miura KI, Watanabe K (1991) A novel cloverleaf structure found in mammalian mitochondrial tRNAser(UCN). Nucleic Acids Res 19: 6101–6105

    Article  PubMed  CAS  Google Scholar 

  • Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science 292:883–896

    Article  PubMed  CAS  Google Scholar 

  • Yusupova G, Jenner, L, Rees B, Moras D, Yusupov N (2006) Structural basis for messenger RNA movement on the ribosome. Nature 444: 391–394

    Article  PubMed  CAS  Google Scholar 

  • Zagryadskaya EI, Kotlova N, Steinberg SV (2004) Key Elements in Maintenance of the tRNA L-shape. J Mol Biol 340: 435–444

    Article  PubMed  CAS  Google Scholar 

  • Zíková A, Panigrahi AK, Dalley RA, Acestor N, Anupama A, Ogata Y, Myler PJ, Stuart K. (2008) Trypanosoma brucei mitochondrial ribosomes: affinity purification and component identification by mass spectrometry. Mol Cell Proteomics 7: 1286–1296

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Agrawal, R.K., Sharma, M.R., Yassin, A., Lahiri, I., Spremulli, i.L. (2011). Structure and function of organellar ribosomes as revealed by cryo-EM. In: Rodnina, M.V., Wintermeyer, W., Green, R. (eds) Ribosomes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0215-2_8

Download citation

Publish with us

Policies and ethics