Skip to main content

Ventrikuläre Unterstützungssysteme

  • Chapter
  • First Online:
Kompendium der modernen Herzchirurgie beim Erwachsenen
  • 3675 Accesses

Zusammenfassung

In diesem Kapitel wird ein Überblick über die Entwicklung und Funktionsweise verschiedener Systeme zur mechanischen Kreislaufunterstützung gegeben. Die Indikationen für den Einsatz dieser Systeme, die Interaktionen zwischen Patienten und Device und die daraus resultierenden möglichen Komplikationen sind weitere Inhalte dieses Abschnittes. Die Implantationstechnik eines modernen Devices wird detailliert beschrieben, ebenso das perioperative Patientenmanagement sowie die Behandlung der Patienten im Langzeitverlauf.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Literatur

  • Aaronson KD, Schwartz JS, Chen TM et al (1997) Development and prospective evaluation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 95:2660–2667

    Article  CAS  PubMed  Google Scholar 

  • Abrams D, Garan AR, Abdelbary A et al (2018) Position paper for the organization of ECMO programs for cardiac failure in adults. Intensive Care Med. 2018;44:717–729

    Google Scholar 

  • Basra SS, Attallab AA, Wagle R et al (2009) Infections in patients on continuous flow LVAD: epidemiology and role in causation of cerebrovascular accidents. J Heart Lung Transplant 28:S285

    Article  Google Scholar 

  • Boehme AK, Pamboukian SV, George JF et al (2017) Anticoagulation control in patients with ventricular assist devices. ASAIO J 63:759–765

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle AJ, Russell DR, Teuteberg JJ et al (2009) Low thromboembolism and pump thrombosis with the Heart Mate II left ventricular assist device: analysis of outpatient anticoagulation. J Heart Lung Transplant 28:881–887

    Article  PubMed  Google Scholar 

  • Carrel A, Lindbergh C (1935) The culture of whole organs. Science 81:25–41

    Article  Google Scholar 

  • Centofanti P, Baronetto A, Attisani M et al (2017) Thrombosis in left ventricular assistance device with centrifugal technology: is early thrombolysis a better solution? Int J Artif Organs 40:629–635

    Article  PubMed  Google Scholar 

  • Chinn R, Dembitsky W, Eaton L et al (2005) Multicenter experience: prevention and management of left ventricular assist device infections. ASAIO J 51:461–470

    Article  PubMed  Google Scholar 

  • Dandel M, Hetzer R (2018) Temporary assist device support for the right ventricle: pre-implant and post implant challenges. Heart Fail Rev. 2018;23:157–171

    Google Scholar 

  • DeBakey M (1971) Left ventricular bypass pump for cardiac assistance. Am J Cardiol 27:3

    Article  CAS  PubMed  Google Scholar 

  • Deng MC, Loebe M, El-Banayosy A et al (2001) Mechanical circulatory support for advanced heart failure. Effect of patient selection on outcome. Circulation 103:231–237

    Article  CAS  PubMed  Google Scholar 

  • Dew M, Kormos R, Roth L (1993) Life quality in the era of bridging to cardiac transplantation: bridge patients in an outpatient setting. ASAIO J 39:145

    Article  CAS  PubMed  Google Scholar 

  • Fang JC (2009) Rise of the machines – left ventricular assist devices as permanent therapy for advanced heart failure. N Engl J Med 361:1–3

    Google Scholar 

  • Fitzpatrick JR, Frederick JR, Hsu VM et al (2008) Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant 27:1286–1292

    Article  PubMed  PubMed Central  Google Scholar 

  • Frazier O, Kirklin JK (Hrsg) (2006) ISHLT monograph series. Mechanical circulatory support, Bd I. Elsevier Inc.

    Google Scholar 

  • Frazier O, Duncan J, Radovanevic B et al (1992) Successful bridge to heart transplantation with a new left ventricular assist device. J Heart Lung Transplant 11:530

    CAS  PubMed  Google Scholar 

  • Geisen U, Heilmann C, Beyersdorf F et al (2008) Non-surgical bleeding in patients with ventricular assist devices could be explained by acquired von Willebrand disease. Eur J Cardiothorac Surg 33:679–684

    Article  PubMed  Google Scholar 

  • Goubergrits L, Affeld K (2004) Numerical estimation of blood damage in artificial organs. Artif Organs 28:499–507

    Article  PubMed  Google Scholar 

  • Haberl T, Riebandt J, Mahr S et al (2014) Viennese approach to minimize the invasiveness of ventricular assist device implantation. Eur J Cardiothorac Surg 46:991–996

    Article  PubMed  Google Scholar 

  • Haj-Yahia S, Birks E, Rogers P et al (2007) Midterm reliability with the Jarvik 2000 axial flow left ventricular assist device. J Thorac Cardiovasc Surg 134:199–203

    Article  PubMed  Google Scholar 

  • Hetzer R, Potapov EV, Huebler S (2006) Procedings of the 4th Berlin symposium on mechanical circulatory support. J Card Surg 21:512–520

    Article  Google Scholar 

  • Hill J, Farrar D, Hershon J et al (1986) Use of a prosthetic ventricle as a bridge to cardiac transplantation for postinfarction cardiogenic shock. N Engl J Med 314:626

    Article  CAS  PubMed  Google Scholar 

  • Hoefer D, Poelzl G, Kilo J et al (2005) Early detection and successful therapy of fulminant chlamydia pneumoniae myocarditis. ASAIO J 51:480–481

    Article  PubMed  Google Scholar 

  • Hoefer D, Ruttmann E, Poelzl G et al (2006) Outcome evaluation of the bridge to bridge concept in patients with cardiogenic shock. Ann Thorac Surg 82:28–34

    Article  PubMed  Google Scholar 

  • Hoefer D, Velik-Salchner C, Antretter H (2014) Increase in left ventricular assist device thrombosis. Letter to the editor. N Engl J Med 370:1464

    PubMed  Google Scholar 

  • Höfer D, Antretter H, Laufer G (2007) Klinische Indikationskriterien für mechanische Kreislaufunterstützung. Z Herz Thorax Gefäßchir 21:273–279

    Article  Google Scholar 

  • Holman WA, Teitel ER, Itescu S (2006) Chapter 2: Biologic barriers to mechanical circulatory support. ISHLT Monograph Series 1:9–32

    Google Scholar 

  • John R (2008) Current axial-flow devices – the HeartMate® II and Jarvik 2000 left ventricular assist devices. Semin Thorac Cardiovasc Surg 20:264–272

    Google Scholar 

  • Kambic HE, Nose Y (1991) Biomaterial for blood pumps. Aus: Blood compatible materials and devices: perspectives towards the 21st century. Technomic Publishing Co. Inc, Lancaster, S 141–151

    Google Scholar 

  • Kavarana MN, Pessin-Minsley MS, Urtecho J et al (2002) Right ventricular dysfunction and organ failure in left ventricular assist device recipients: a continuing problem. Ann Thorac Surg 73:745–750

    Article  PubMed  Google Scholar 

  • Kim YI, Ferdinande P, Flameng W, Daenen W (1995) Isolated right ventricular unloading for postcardiotomy right ventricular failure in a child. Eur J Cardiothorac Surg 9:169–171

    Article  CAS  PubMed  Google Scholar 

  • Kirklin JK, Naftel DC, Kormos RL et al (2010) Second INTERMACS annual report: More than 1000 primary left ventricular assist device implants. J Heart Lung Transplant 29:1–10

    Article  PubMed  PubMed Central  Google Scholar 

  • Kirklin JK, Pagani FD, Kormos RL et al (2017) Eighth annual INTERMACS report: Special focus on framing the impact of adverse events. J Heart Lung Transplant 36:1080–1086

    Article  PubMed  Google Scholar 

  • Klovaite J, Gustafson F, Mortensen SA et al (2009) Severely impaired von Willebrand factor-dependent platelet aggregation in patients with a continuous-flow left ventricular assist device (Heart Mate II). J Am Coll Cardiol 53:2162–2167

    Article  CAS  PubMed  Google Scholar 

  • Krabatsch T, Henning E, Stepananko A et al (2011) Evaluation of the HeartWare HVAD centrifugal pump for right ventricular assistance in an in vitro model. ASAIO J 57:183–187

    Article  PubMed  Google Scholar 

  • Ledford ID, Miller DV, Mason NO et al (2011) Differential infection rates between velours versus silicone interface at the Heart Mate II Driveline exit site: structural and ultrastructural insight into possible causes. J Heart Lung Transplant 30:S10

    Article  Google Scholar 

  • LeGallois C (1813) Experiences on the principle of life. Thomas, Philadelphia

    Google Scholar 

  • Levy WC, Mozaffarin D, Linker DT et al (2006) The Seattle heart failure model: prediction of survival in heart failure. Circulation 113:1424–1433

    Article  PubMed  Google Scholar 

  • Levy WC, Mozaffarin D, Linker DT et al (2009) Can the Seattle heart failure model be used to risk-stratify heart failure patients for potential left ventricular assist device therapy? J Heart Lung Transplant 28:231–236

    Article  PubMed  Google Scholar 

  • Magliato KE, Kleisli T, Soukiasian HJ et al (2003) Biventricular support in patients with profound cardiogenic shock: a single center experience. ASAIO J 49:475–479

    PubMed  Google Scholar 

  • Martinez BK, Yik B, Tran R et al (2018) Meta-Analysis of time in therapeutic range in continuous-flow left ventricular assist device patients receiving warfarin. Artif Organs. 2018;42:700–704

    Google Scholar 

  • Matthews JC, Koelling TM, Pagani FD, Aaronson KD (2008) The right ventricular failure risk score: a pre-operative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol 51:2163–2172

    Article  PubMed  PubMed Central  Google Scholar 

  • McKinlay SM, Sleeper L, Waclawiw M et al (1995) Evaluation of an implantable ventricular assist system for humans with chronic refractory heart failure: designing a randomized trial. ASAIO J 41:16

    CAS  PubMed  Google Scholar 

  • Mehra MR, Naka Y, Uriel N et al (2017) A fully magnetically levitated circulatory pump for advanced heart failure. N Engl J Med 376:440–450

    Article  PubMed  Google Scholar 

  • Miera O, Potapov EV, Redlin M, Stepanenko A, Berger F, Hetzer R, Hübler M (2011) First experiences with the HeartWare ventricular assist system in children. Ann Thorac Surg 91:1256–1260

    Article  PubMed  Google Scholar 

  • Mikus E, Stepanenko A, Krabatsch T et al (2011) [Reversibility of fixed pulmonary hypertension in left ventricular assist device support recipients. Eur J Cardiothorac Surg. 2011;40:971–977

    Google Scholar 

  • Miller LW, Pagani FD, Russell SD et al (2007) Use of a continuous-flow device in patients awaiting heart transplantation. N Engl J Med 357:885–896

    Article  CAS  PubMed  Google Scholar 

  • Moazami N, Pasque MK, Moon MR et al (2004) Mechanical support for isolated right ventricular failure in patients after cardiotomy. J Heart Lung Transplant 23:1371–1375

    Article  PubMed  Google Scholar 

  • Muslem R, Caliskan K, Leebeek FW (2018) Acquired coagulopathy in patients with left ventricular assist devices. J Thromb Haemost 16:429–440

    Article  CAS  PubMed  Google Scholar 

  • Nair PK, Kormos RL, Teuteberg JJ et al (2010) Pulsatile left ventricular assist device support as a bridge to decision in patients with end-stage heart failure complicated by pulmonary hypertension. J Heart Lung Transplant 29:201–218

    Article  PubMed  PubMed Central  Google Scholar 

  • Nascimbene A, Neelamegham S, Frazier OH et al (2016) Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 25:3133–3141

    Article  CAS  Google Scholar 

  • Ochiai Y, McCarthy PM, Smerida NG et al (2002) Predictors of severe right ventricular failure after implantable left ventricular assist device insertion: analysis of 245 patients. Circulation 106(Suppl I):198–202

    Google Scholar 

  • Pagani FD, Aaronson KD, Swaniker F, Bartlett RH (2001) The use of extracorporeal life support in adult patients with primary cardiac failure as a bridge to implantable left ventricular assist device. Ann Thorac Surg 71:77–81

    Article  Google Scholar 

  • Pagani FD, Miller LW, Russell SD et al (2009) Extended mechanical circulatory support with a continuous-flow rotary left ventricular assist device. J Am Coll Cardiol 54:312–321

    Article  PubMed  Google Scholar 

  • Park SJ, Milano CA, Rogers JG et al (2012) Outcomes in advanced heart failure patients with left ventricular assist devices for destination therapy. Circ Heart Fail 5:241–248

    Article  PubMed  Google Scholar 

  • Pennington DG, Griffith BP, McKinlay SM et al (1995) Evaluation of an implantable ventricular assist system for humans with chronic refractory heart failure: study overview. ASAIO J 41:11–15

    Article  CAS  PubMed  Google Scholar 

  • Pinney SP, Anyanwu AC, Lala A et al (2017) Left ventricular assist devices for lifelong support. J Am Coll Cardiol 69:2845–2861

    Article  PubMed  Google Scholar 

  • Portner P, Oyer P, McGregor C (1985) First human use of an electrically powered implantable ventricular assist system. Artif Organs 9:36

    Google Scholar 

  • Riebandt J, Sandner S, Mahr S et al (2013) Minimally invasive Thoratec HeartMate II implantation in the setting of severe thoracic aortic calcification. Ann Thorac Surg 96:1094–1096

    Article  PubMed  Google Scholar 

  • Riebandt J, Haberl T, Mahr S et al (2014) Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg 46:486–492

    Article  PubMed  Google Scholar 

  • Rogers JG, Pagani FD, Tatooles AJ et al (2017) Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med 376:451–460

    Article  PubMed  Google Scholar 

  • Rose E, Gelijns A, Moskowitz A et al (2001) Long-term mechanical left ventricular assistance for end-stage heart failure. N Engl J Med 345:1435–1443

    Article  CAS  PubMed  Google Scholar 

  • Saxton G, Andrews C (1960) An ideal pump with hydrodynamic characteristics analogous to the mammalian heart. Trans Am Soc Artif Intern Organs 6:288

    PubMed  Google Scholar 

  • Slaughter MS, Rogers JG, Milano CA et al (2009) Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med 361:2241–2251

    Article  CAS  PubMed  Google Scholar 

  • Slaughter MS, Pagani FD, Rogers JG et al (2010) Clinical management of continuous-flow left ventricular assist devices in advanced heart failure. J Heart Lung Transplant 29:4S

    Article  Google Scholar 

  • Spanier TB, Oz M, Levin H et al (1996a) Activation of coagulation and fibrinolytic pathways in patients with left ventricular assist devices. J Thorac Cardiovasc Surg 112:1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Spanier TB, Rose EA, Schmidt AM et al (1996b) Interactions between dendritic cells and T cells on the surface of left ventricular assist devices leads to a TH2 pattern of cytokine production and B cell hyperreactivity in vitro. Circulation 94:1704

    Google Scholar 

  • Stulak JM, Griffith KE, Nicklas JM, Pagani FD (2011) The use of the HeartWare HVAD for long-term right ventricular support after implantation of the HeartMate® II device. J Thorac Cardiovasc Surg. 2011;142:e140–2

    Google Scholar 

  • Tsubota H, Ribeiro RV, Billia F et al (2017) Left ventricular assist device exchange: the Toronto General Hospital experience. Can J Surg 60:253–259

    Article  PubMed  PubMed Central  Google Scholar 

  • Tsukui H, Teuteberg JT, McNamarra DM (2005) Biventricular assist device utilization for patients with morbid congestive heart failure: a justifiable strategy. Circulation 112:565–572

    Article  Google Scholar 

  • Tulchinsky M (2008) Lower gastrointestinal bleeding diagnosed by red blood cell scintigraphy in a patient with a left ventricular assist device. Clin Nucl Med 33:856–858

    Article  PubMed  Google Scholar 

  • Velik-Salchner C, Hoermann C, Hoefer D, Margreiter J, Mair P (2009) Thromboembolic complications during weaning from right ventricular assist device support. Anaesth Analg 109:354–357

    Article  Google Scholar 

  • Wampler R, Moise J, Frazier O et al (1988) In vivo evaluation of a peripheral vascular access axial flow blood pump. ASAIO J 34:450

    CAS  Google Scholar 

  • Westaby S, Banning AP, Saito S et al (2002) Circulatory support for long-term treatment of heart failure: experience with an intraventricular continuous flow pump. Circulation 105:2588–2591

    Article  PubMed  Google Scholar 

  • Wheeldon DR, LaForge DH, Lee J et al (2002) Novacor left ventricular assist system long-term performance: comparison of clinical experience with demonstrated in vitro reliability. ASAIO J 48:546–551

    Article  PubMed  Google Scholar 

  • Wieselthaler GM, O Driscoll G, Jansz P et al (2010) Initial clinical experience with a novel left ventricular assist device with a magnetically levitated rotor in a multi-institutional trial. J Heart Lung Transplant 29:1218–1225

    Article  PubMed  Google Scholar 

  • Williams MR, Oz MC (2001) Indications and patient selection for mechanical ventricular assistance. Ann Thorac Surg 71:S86–S91

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Höfer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Austria, ein Teil von Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Höfer, D., Antretter, H. (2020). Ventrikuläre Unterstützungssysteme. In: Stanger, O. (eds) Kompendium der modernen Herzchirurgie beim Erwachsenen. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0451-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0451-4_14

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0450-7

  • Online ISBN: 978-3-7091-0451-4

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics