Skip to main content

Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures

  • Chapter
Focus on Extrapyramidal Dysfunction

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 68))

Summary

Levodopa and dopamine are metabolized to 3-O-methyldopa and 3-methoxytyramine, respectively, by the enzyme catechol-O-methyltransferase (COMT) leading to the production of the demethylated cofactor S-adenosylhomocysteine (SAH) and subsequently homocysteine (HC). Indeed, treatment of Parkinson’s disease (PO) patients with levodopa leads to increased HC blood levels. Therefore, HC is discussed to be involved in the pathogenesis of PD as well as in enhanced progression of PD in patients treated with levodopa. Here we investigated the toxicity of HC and its derivatives SAH, homocysteic acid (HCA) and cysteic acid (CA) on tyrosine hydroxylase (TH)-positive neurons in primary mesencephalic cultures from rat in vitro. Furthermore, we evaluated the toxicity of HC on cultures stressed with the dopaminergic neurotoxin 1-methyl-4-phenylpyridinium (MPP+). Incubation with HC or HCA did not result in significant effects on TH-positive neuron survival with concentrations up to 1mM, but led to morphological changes of TH-positive cells with significantly fewer and shorter neurites at concentrations of ≥100 μM after 48 h. In contrast, SAH and CA were toxic at concentrations of 100 >M after 48 h. Furthermore, MPP+ showed strong toxicity towards TH-positive cells after 48 h (half-maximal toxic concentration: 20 μM), whereas eo-incubation with HC for 24 or 48 h did not further alter TH-positive cell survival. Taken together, our results do not demonstrate relevant dopaminergic toxicity of HC in vitro, and therefore HC is most likely not involved in the pathogenesis of PO or in accelerating the progression of PO by levodopa.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allain P, Le Bouil A, Cardillet E, Le Quay L, Bagheri H, Montastruc JL (1995) Sulfate and cysteine levels in the plasma of patients with Parkinson’s disease. Neurotoxicology 16: 527–529

    PubMed  CAS  Google Scholar 

  • Althausen S, Paschen W (2000) Homocysteine-induced changes in mRNA levels of genes coding for cytoplasmic-and endoplasmic reticulum-resident stress proteins in neuronal cell cultures. Brain Res Mol Brain Res 841-2): 32–40

    Article  PubMed  CAS  Google Scholar 

  • Ben Shlomo Y, Marmot MG (1995) Survival and cause of death in a cohort of patients with parkinsonism: possible clues to aetiology? J Neurol Neurosurg Psychiatry 58: 293–

    Article  Google Scholar 

  • Blessing H, Bareiss M, Zettlmeisl H, Schwarz J, Storch A (2003) Catechol-O-methyltransferase inhibition protects against 3,4-dihydroxyphenylalanine (dopa) toxicity in primary mesencephalic cultures: new insights into levodopa toxicity. Neurochem Int 42(2): 139–151

    Article  PubMed  CAS  Google Scholar 

  • Blunt SB, Jenner P, Marsden CD (1993) Suppressive effects of L-dopa on dopamine cells remaining in the ventral tegmental area of rats previously exposed to the neurotoxin 6-hydroxydopamine. Mov Disord 8: 129–133

    Google Scholar 

  • Broch OJ, Ueland PM (1984) Regional distribution of homocysteine in the mammalian brain. J Neurochem 43(6): 1755–1757

    Article  PubMed  CAS  Google Scholar 

  • Buemi M, Marino D, Di Pasquale G, Floccari F, Ruello A, Aloisi C, Corica F, Senatore M, Romeo A, Frisina N (2001) Effects of homocysteine on proliferation, necoris and apoptosis of vascular smooth muscle cells in culture and influence of folic acid. Thromb Res 104: 207–213

    Article  PubMed  CAS  Google Scholar 

  • Chambers JC, McGregor A, Kooners JS (1998) Acute hyperhomocysteinaemia and endothelial dysfanction. Lancet 351: 36–37

    Article  PubMed  CAS  Google Scholar 

  • Chen C, Halkos ME, Surowiec SM, Conklin BS, Lin PH, Lumsden AB (2000) Effects of homocysteine on smooth muscle cell proliferation in both cell culture and artery perfusion culture models. J Surg Res 88: 26–33

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Zhang Z, Gash DM, Mattson MP (1999) Participation of prostate apoptosis response-4 in degeneration of dopaminergic neurons in models of Parkinson’s disease. Ann Neurol 46: 587–597

    Article  PubMed  CAS  Google Scholar 

  • Duan W, Ladenheim B, Cutler RG, Kruman II, Cadet JL, Mattson MP (2002) Dietary folate deficiency and elevated homocysteine levels endanger dopaminergic neurons in models of Parkinson’s disease. J Neurochem 80: 101–110

    Article  PubMed  CAS  Google Scholar 

  • Fahn S, Parkinson’s Study Group (2002) Results of the ELLDOPA (Earlier vs. Later levodopa) study. Mov Disord 17[Suppl 5]: S13

    Google Scholar 

  • Goetz CG (1998) Influence of COMT inhibition on levodopa pharmacology and therapy. Neurology 50[Suppl 5]: S26–S30

    Article  PubMed  CAS  Google Scholar 

  • Gorell JM, Johnson CC, Rybicki BA (1994) Parkinson’s disease and its comorbid disorders: an analysis of Michigan martality data, 1970 to 1990. Neurology 44: 1865–1868

    Article  PubMed  CAS  Google Scholar 

  • Ho PI, Collins SC, Dhitavat S, Ortiz D, Ashline D, Rogers E, Shea TB (2001) Homocysteine potentiates beta-amyloid neurotoxicity: role of oxidative stress. J Neurochem 78(2): 249–253

    Article  PubMed  CAS  Google Scholar 

  • Ho PI, Ortiz D, Rogers E, Shea TB (2002) Multiple aspects of homocysteine neurotoxicity: glutamate excitotoxicity, kinase hyperactivation and DNA damage. J Neurosci Res 70(5): 694–702

    Article  PubMed  CAS  Google Scholar 

  • Jara-Prado A, Ortega-Vazquez A, Martinez-Ruano L, Rios C, Santamaria A (2003) Homocysteine-induced brain lipid peroxidation: effects of NMDA receptor blockade, antioxidant treatment, and nitric oxide synthase inhibition. Neurotox Res 5(4): 237–243

    Article  PubMed  Google Scholar 

  • Jeffrey D, Roth JA (1984) Characterization of membrane-bound and soluble catechol-O-methyltransferase from human frontal cortex. J Neurochem 24(3): 826–832

    Article  Google Scholar 

  • Kim WK, Pae YS (1996) Involvement of N-methyl-D-aspartate receptor and free radical in homocysteine-mediated toxicity on rat cerebellar granule cells in culture. Neurosci Lett 216(2): 117–120

    PubMed  CAS  Google Scholar 

  • Klockgether T, Turski L, Honore T, Zhang ZM, Gash DM, Kurlan R, Greenamyre JT (1991) The AMPA receptor antagonist NBQX has antiparkinsonian effects in monoamine depleted rats and MPTP-treated monkeys. Ann Neurol 30: 717–723

    Article  PubMed  CAS  Google Scholar 

  • Koutsilieri E, Chen T-S, Kruzik P, Rausch W-D (1995) A morphometric analysis of bipolar and multipolar TH-IR neurons treated with the neurotoxin MPP+ in eo-cultures from mesencephalon and striatum of embryonic C57BL/6 mice. J Neurosci Res 41: 197–205

    CAS  Google Scholar 

  • Kruman II, Kumaravel TS, Lohani A, Pedersen WA, Cutler RG, Kruman Y, Haughey N, Lee J, Evans M, Mattson MP (2002) Folic acid deficiency and homocysteine impair DNA repair in hippocampal neurons and sensitize them to amyloid toxicity in experimental models of Alzheimer’s disease. J Neurosci 22(5): 1752–1762

    PubMed  CAS  Google Scholar 

  • Kuhn W, Roebroek R, Blom H, van Oppenraaij D, Muller T (1998) Hyperhomocysteinaemia in Parkinson’s disease. J Neurol 245: 811–812

    Article  PubMed  CAS  Google Scholar 

  • Lang AE, Lozano AM (1998) Parkinson’s disease. N Engl J Med 339: 1044–1053; 1130-1143

    Article  PubMed  CAS  Google Scholar 

  • Lindgren A, Brattstrom L, Norrving B, Hultberg B, Andersson A, Johansson BB (1995) Plasma homocysteine in the acute and convalescent phases after stroke. Stroke 26(5): 795–800

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Kim WK, Choi YB, Kumar S, D’Emilia DM, Rayudu PV, Amelle DR, Stamler JS (1997) Neurotoxicity associated with dual actions of homocystein at the N-methyl-D-aspartate receptor. Proc Natl Acad Sci USA 94: 5923–5928

    Article  PubMed  CAS  Google Scholar 

  • Liu XX, Wilson K, Charlton CG (2000) Effects of L-Dopa treatment on methylation in mouse brain: implications for the side effects of L-dopa. Life Sci 66: 2277–2288

    Article  PubMed  CAS  Google Scholar 

  • Loschmann PA, Lange KW, Wachtel H, Turski L (1994) MPTP-induced degeneration: interference with glutamatergic toxicity. J Neural Transm [Suppl] 43: 133–143

    CAS  Google Scholar 

  • Luquin R, Del Rio L, Saldise L, Setuain J, Manzi B (2001) Levodopa but not pergolide administration induces apoptosis in the substantia nigra neurons of rats with partial nigrostriatal lesion. Neurology 56[Suppl 3]: A378

    Google Scholar 

  • Männistö PT, Tuomainen P (1991) Effect of high single doses of levodopa and carbidopa on brain dopamine and its metabolites: modulation by selective inhibitors of monoamine oxidase and/or catechol-O-methyltransferase in the male rat. Naunyn Schmiedebergs Arch Pharmacol 344(4): 412–418

    Article  PubMed  Google Scholar 

  • Männisto PT, Ulmanen I, Lundström K, Taskinen J, Tenhunen J, Tilgmann C, Kaakkola S (1992) Characteristics of catechol O-methyl transferase (COMT) and properties of selective COMT inhibitors. Prog Drug Res 39: 291–350

    Google Scholar 

  • Mena MA, Pardo B, Casarejos MJ, Fahn S, De Yebenes JG (1992) Neurotoxicity oflevodopa on catecholamine-rich neurons. Mov Disord 7: 23–31

    CAS  Google Scholar 

  • Mena MA, Pardo B, Paino CL, De Yebenes JG (1993) Levodopa toxicity in foetal rat midbrain neurones in culture: modulation by ascorbic acid. NeuroReport 4(4): 438–440

    Article  PubMed  CAS  Google Scholar 

  • Menzies FM, Cookson MR, Taylor RW, Tumbull DM, Chrzanowska-Lightowlers ZM, Dong L, Figlewicz DA, Shaw PJ (2002) Mitochondrial dysfunction in a cell model of familial amyotrophic lateral sclerosis. Brain 125: 1522–1533

    Article  PubMed  Google Scholar 

  • Michel PP, Agid Y (1992) The glutamate antagonist, MK-801, does not prevent dopaminergic cell death induced by the 1-methyl-4-phenylpyridinium ion (MPP+) in rat dissociated mesencephalic cultures. Brain Res 597: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Michel PP, Dandapani BK, Knusel B, Sanchez-Ramos J, Hefti F (1990) Toxicity of 1-methyl-4-phenylpyridinium for rat dopaminergic neurons in culture: selectivity and irreversibility. J Neurochem 54: 1102–1109

    Article  PubMed  CAS  Google Scholar 

  • Miller JW, Shukitt-Hale B, Villalobos-Molina R, Nadeau MR, Selhub J, Joseph JA (1997) Effect of L-Dopa and the catechol-O-methyltrasnferase inhibitor Ro 41-0960 on sulfur amino acid metabolites in rats. Clin Neuropharmacol 20: 55–66

    Article  PubMed  CAS  Google Scholar 

  • Müller T, Werne B, Fowler B, Kuhn W (1999) Nigral endothelial dysfunction, homocystein, and Parkinson’s disease. Lancet 354: 126–127

    Article  PubMed  Google Scholar 

  • Müller T, Woitalla D, Hauptmann B, Fowler B, Kuhn W (2001) Decrease of methionine and Sadenosylmethionine and increase of homocysteine in treated patients with Parkinson’s disease. Neurosci Lett 308: 54–56

    Article  PubMed  Google Scholar 

  • Parsons RB, Waring RH, Ramsden DB, Williams AC (1998) In vitro effects of cysteine metabolites homocysteic acid, homocysteine and cysteic acid upon human neuronal cell lines. Neurotoxicology 19: 599–603

    PubMed  CAS  Google Scholar 

  • Perry IJ, Refsum H, Morris RW, Ebrahim SB, Ueland PM, Shaper AG (1995) Prospective study of serum total homocysteine concentration and risk of stroke in middle-aged British men. Lancet 346: 1395–1398

    Article  PubMed  CAS  Google Scholar 

  • Selhub J, Jacques PF, Bostom AG, D’ Agostino RB, Wilson PW, Belanger AJ, O’Leary DH, Wolf PA, Schaefer EJ, Rosenberg IH (1995) Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 332(5): 286–291

    Article  PubMed  CAS  Google Scholar 

  • Storch A, Blessing H, Bareiss M, Jankowski S, Ling ZD, Carvey P, Schwarz J (2000a) Catechol-O-methyltransferase inhibition attenuates levodopa toxicity in mesencephalic dopamine neurons. Mol Pharmacol 57: 589–594

    PubMed  CAS  Google Scholar 

  • Storch A, Burkhardt K, Ludolph AC, Schwarz J (2000) Protective effects of riluzole on dopamine neurons: involvement of oxidative stress and cellular energy metabolism. J Neurochem 75(6): 2259–2269

    Article  PubMed  CAS  Google Scholar 

  • Tolosa E, Marti MJ, Valldeoriola F, Molinuevo JL (1998) History of levodopa and dopamine agonists in Parkinson’s disease treatment. Neurology 50[Suppl 6]: S2–S10

    Article  PubMed  CAS  Google Scholar 

  • Turski L, Bressler K, Rettig KJ, Loschmann PA (1991) Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists. Nature> 349: 414–

    Article  PubMed  CAS  Google Scholar 

  • White AR, Huang X, Jobling MF, Barrow CJ, Beyreuther K, Masters CL, Bush AI, Cappai R (2001) Homocysteine potentiates copper-and amyloid beta peptide-mediated toxicity in primary neuronal cultures: possible risk factors in the Alzheimer’s-type neurodegenerative pathways. J Neurochem 76(5): 1509–1520

    Article  PubMed  CAS  Google Scholar 

  • Wurtman RJ (1972) Effect of L-dopa on S-adenosylmethionine levels and norepinephrine metabolism in rat brain. In: Costa E, Iversen LL, Paoletti R (eds) Advances in biochemical psychopharmacology, vol 6. Raven Press,New York, pp 241–246.

    Google Scholar 

  • Yassin MS, Cheng H, Ekblom J, Oreland L (1998) Inhibitors of catecholamine metabolizing enzymes cause changes in S-adenosylmethionine and S-adenosylhomocystein in the rat brain. Neurochem Int 32: 53–59

    Article  PubMed  CAS  Google Scholar 

  • Yasui K, Kowa H, Nakaso K, Takeshima T, Nakashima K (2000) Plasma homocysteine and MTHFR C677T genotype in levodopa-treated patients with PD. Neurology 55: 437–440

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Wien

About this chapter

Cite this chapter

Heider, I., Lehmensiek, V., Lenk, T., Müller, T., Storch, A. (2004). Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures. In: Müller, T., Riederer, P. (eds) Focus on Extrapyramidal Dysfunction. Journal of Neural Transmission. Supplementa, vol 68. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0579-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0579-5_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-21114-4

  • Online ISBN: 978-3-7091-0579-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics