Skip to main content

Scaling Analysis of Real-Chain Conformations

  • Chapter
  • First Online:
Polymer Physics

Abstract

Scaling analysis is a powerful tool to learn non-ideal-chain conformations. Several examples are introduced by considering the volume repulsion and its concentration effect, the attraction in a single chain, the charge interactions and their concentration effect, the stretching, the compression, and the adsorption, respectively. The blob model reflects the local thermal energy against the external disturbance. The Flory mean-field treatment derives the optimized coil size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barrat JL, Joanny JF (1996) Theory of polyelectrolyte solutions. In: Rice S, Prigogine I (eds) Advances in chemical physics. Wiley, New York, pp 1–66

    Chapter  Google Scholar 

  • Daoud M, Cotton JP, Farnoux B, Jannink G, Sarma G, Benoit H, Duplessix R, Picot C, de Gennes PG (1975) Solutions of flexible polymers: neutron experiments and interpretation. Macromolecules 8:804–818

    Article  CAS  Google Scholar 

  • De Gennes PG (1972) Exponents for excluded volume problem as derived by Wilson method. Phys Lett A 38:339–340

    Article  Google Scholar 

  • De Gennes PG (1976) Scaling theory of polymer adsorption. J Phys 37:1445–1452

    Article  Google Scholar 

  • De Gennes PG (1979) Scaling concepts in polymer physics. Cornell University Press, Ithaca

    Google Scholar 

  • De Gennes PG (1981) Polymer solutions near an interface. 1. Adsorption and depletion layers. Macromolecules 14:1637–1644

    Article  Google Scholar 

  • De Gennes PG (1983) Scaling theory of polymer adsorption: proximal exponent. J Phys Lett 44:L241–L246

    Article  Google Scholar 

  • De Gennes PG, Pincus P, Velasco RM, Brochard F (1976) Remarks on polyelectrolyte conformation. J Phys (Paris) 37:1461–73

    Article  Google Scholar 

  • Dobrynin AV, Rubinstein M (2001) Counterion condensation and phase separation in solutions of hydrophobic polyelectrolytes. Macromolecules 34:1964–1972

    Article  CAS  Google Scholar 

  • Dobrynin AV, Rubinstein M (2005) Theory of polyelectrolytes in solutions and at surfaces. Prog Polym Sci 30:1049–1118

    Article  CAS  Google Scholar 

  • Dobrynin AV, Rubinstein M, Obukhov SP (1996) Cascade of transitions of polyelectrolytes in poor solvents. Macromolecules 29:2974–2979

    Article  CAS  Google Scholar 

  • Edwards SF (1965) The statistical mechanics of polymers with excluded volume. Proc Phys Soc Lond 85:613–624

    Article  CAS  Google Scholar 

  • Edwards SF (1966) The theory of polymer solutions at intermediate concentration. Proc Phys Soc Lond 88:265–280

    Article  CAS  Google Scholar 

  • Eisenriegler E, Kremer K, Binder K (1982) Adsorption of polymer-chains at surfaces: scaling and Monte-Carlo analyses. J Chem Phys 77:6296–6320

    Article  CAS  Google Scholar 

  • Fleer GJ, Cohen-Stuart MA, Scheutjens JMHM, Cosgrove T, Vincent B (1993) Polymers at interfaces. Chapman and Hall, London

    Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Freed KF (1987) Renormalization group theory of macromolecules. Wiley, New York

    Google Scholar 

  • Freed KF, Dudowicz J, Stukalin EB, Douglas JF (2010) General approach to polymer chains confined by interacting boundaries. J Chem Phys 133:094901

    Article  Google Scholar 

  • Fuoss RM, Katchalsky A, Lifson S (1951) The potential of an infinite rod-like molecule and the distribution of the counter ions. Proc Natl Acad Sci USA 37:579–589

    Article  CAS  Google Scholar 

  • Golestanian R, Kardar M, Liverpool TB (1999) Collapse of stiff polyelectrolytes due to counterion fluctuations. Phys Rev Lett 82:4456–4459

    Article  CAS  Google Scholar 

  • Guggenheim EA (1952) Mixtures. The Clarendon Press, Oxford

    Google Scholar 

  • Hansen CM (1967) Three dimensional solubility parameters and solvent diffusion coefficients. Danish Technology Press, Copenhagen

    Google Scholar 

  • Helfand E (1975) Theory of inhomogeneous polymers: fundamentals of the Gaussian random-walk model. J Chem Phys 62:999–1005

    Article  CAS  Google Scholar 

  • Hildebrand JH (1936) The solubility of non-electrolytes. Reinhold, New York

    Google Scholar 

  • Hoy KL (1985) Tables of solubility parameters. Union Carbide Corporation, Solvent and Coatings Materials Research and Development Department, South Charleston

    Google Scholar 

  • Hu WB (1998) Structural transformation in the collapse transition of the single flexible homopolymer model. J Chem Phys 109:3686–3690

    Article  CAS  Google Scholar 

  • Ishinabe T (1982) Critical exponents for surface interacting self-avoiding lattice walks. I. Three-dimensional lattices. J Chem Phys 76:5589–5594

    Article  CAS  Google Scholar 

  • Israelachvili JN (1985) Intermolecular and surface forces. Academic, London

    Google Scholar 

  • Joanny JF, Leibler L, de Gennes PG (1979) Effects of polymer solutions on colloid stability. J Polym Sci Polym Phys Ed 17:1073–1084

    Article  CAS  Google Scholar 

  • Kuhn W, Kunzle O, Katchalsky A (1948) Verhalten polyvalenter fadenmolekelionen in lösung. Halvetica Chemica Acta 31:1994–2037

    Article  CAS  Google Scholar 

  • Le Guillou JC, Zinn-Justin J (1977) Critical exponents for the n-vector model in three dimensions from field theory. Phys Rev Lett 39:95–98

    Article  Google Scholar 

  • Madras N, Slade G (1993) The self-avoiding walk. Birkhaeuser, Basel

    Google Scholar 

  • Mandelbrot BB (1983) The fractal geometry of nature. Freeman W.H, New York

    Google Scholar 

  • Manning GS (1969) Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. J Chem Phys 51:924–933

    Article  CAS  Google Scholar 

  • Miller-Chou BA, Koenig JL (2003) A review of polymer dissolution. Prog Polym Sci 28:1223–1270

    Article  CAS  Google Scholar 

  • Odijk T (1977) Polyelectrolytes near the rod limit. J Polym Sci Polym Phys Ed 15:477–483

    Article  CAS  Google Scholar 

  • Odijk T, Houwaart AC (1978) On the theory of the excluded-volume effect of a polyelectrolyte in a 1-1 electrolyte solution. J Polym Sci Polym Phys Ed 16:627–639

    Article  CAS  Google Scholar 

  • Pincus P (1976) Excluded volume effects and stretched polymer chains. Macromolecules 9:386–388

    Article  CAS  Google Scholar 

  • Potemkin II, Khokhlov AR (2004) Nematic ordering in dilute solutions of rodlike polyelectrolytes. J Chem Phys 120:10848

    Article  CAS  Google Scholar 

  • Potemkin II, Limberger RE, Kudlay AN, Khokhlov AR (2002) Rodlike polyelectrolyte solutions: effect of the many-body Coulomb attraction of similarly charged molecules favoring weak nematic ordering at very small polymer concentration. Phys Rev E 66:011802

    Article  Google Scholar 

  • Rayleigh L (1882) On the equilibrium of liquid conducting masses charged with electricity. Philos Mag 14:184–186

    Article  Google Scholar 

  • Rubin RJ (1965) Random walk model of chain polymer adsorption at a surface. J Chem Phys 43:2392–2407

    Article  CAS  Google Scholar 

  • Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, Oxford

    Google Scholar 

  • Scheutjens JMHM, Fleer GJ (1980) Statistical theory of the adsorption of interacting chain molecules. 2. Train, loop, and tail size distribution. J Phys Chem 84:178–190

    Article  CAS  Google Scholar 

  • Semenov A, Joanny JF (1995) Structure of adsorbed polymer layers: loops and tails. Europhys Lett 29:279–284

    Article  CAS  Google Scholar 

  • Skolnick J, Fixman M (1977) Electrostatic persistence length of a wormlike polyelectrolyte. Macromolecules 10:944–948

    Article  CAS  Google Scholar 

  • Wu C, Zhou S (1996) First observation at the molten globule state of a single homopolymer chain. Phys Rev Lett 77:3053–3055

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbing Hu .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Wien

About this chapter

Cite this chapter

Hu, W. (2013). Scaling Analysis of Real-Chain Conformations. In: Polymer Physics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0670-9_4

Download citation

Publish with us

Policies and ethics