Skip to main content

Lipopolysaccharide Export to the Outer Membrane

  • Chapter
  • First Online:
Bacterial Lipopolysaccharides

Abstract

In this chapter we will discuss how lipopolysaccharide (LPS) is transported and assembled from its site of synthesis (the cytoplasm and the inner membrane) to the cell surface. This is a remarkably complex process, as LPS must traverse three different cellular compartments to reach its final destination.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steeghs L, den Hartog R, den Boer A, Zomer B, Roholl P, van der Ley P (1998) Meningitis bacterium is viable without endotoxin. Nature 392:449–450

    CAS  Google Scholar 

  2. Gram HCJ (1884) Über die isolierte Färbung der Schizomyceten in Schnitt- und Trockenpräparaten. Fortschr Med 2:185–189

    Google Scholar 

  3. Beveridge TJ, Davies JA (1983) Cellular responses of Bacillus subtilis and Escherichia coli to the Gram stain. J Bacteriol 156:846–858

    CAS  Google Scholar 

  4. Glauert AM, Thornley MJ (1969) The topography of the bacterial cell wall. Annu Rev Microbiol 23:159–198

    CAS  Google Scholar 

  5. Kellenberger E, Ryter A (1958) Cell wall and cytoplasmic membrane of Escherichia coli. J Biophys Biochem Cytol 4:323–326

    CAS  Google Scholar 

  6. Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    CAS  Google Scholar 

  7. Nikaido H (2003) Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev 67:593–656

    CAS  Google Scholar 

  8. Narita S, Matsuyama S, Tokuda H (2004) Lipoprotein trafficking in Escherichia coli. Arch Microbiol 182:1–6

    CAS  Google Scholar 

  9. Tokuda H (2009) Biogenesis of outer membranes in Gram-negative bacteria. Biosci Biotechnol Biochem 73:465–473

    CAS  Google Scholar 

  10. Kadner RJ (1996) Cytoplasmic membrane. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 58–87

    Google Scholar 

  11. Oliver DB (1996) Periplasm. In: Neidhardt FC, Curtiss R III, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbarger HE (eds) Escherichia coli and Salmonella: cellular and molecular biology. ASM Press, Washington, DC, pp 88–103

    Google Scholar 

  12. Holtje JV (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62:181–203

    CAS  Google Scholar 

  13. Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37:239–253

    CAS  Google Scholar 

  14. Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565:308–317

    CAS  Google Scholar 

  15. Dong C, Beis K, Nesper J, Brunkan-Lamontagne AL, Clarke BR, Whitfield C, Naismith JH (2006) Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 444:226–229

    CAS  Google Scholar 

  16. Collins RF, Beis K, Dong C, Botting CH, McDonnell C, Ford RC, Clarke BR, Whitfield C, Naismith JH (2007) The 3D structure of a periplasm-spanning platform required for assembly of group 1 capsular polysaccharides in Escherichia coli. Proc Natl Acad Sci USA 104:2390–2395

    CAS  Google Scholar 

  17. Pettersson A, Poolman JT, van der Ley P, Tommassen J (1997) Response of Neisseria meningitidis to iron limitation. Antonie Leeuwenhoek 71:129–136

    CAS  Google Scholar 

  18. Kamio Y, Nikaido H (1976) Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry 15:2561–2570

    CAS  Google Scholar 

  19. Gunn JS (2000) Mechanisms of bacterial resistance and response to bile. Microbes Infect 2:907–913

    CAS  Google Scholar 

  20. Ferguson AD, Welte W, Hofmann E, Lindner B, Holst O, Coulton JW, Diederichs K (2000) A conserved structural motif for lipopolysaccharide recognition by procaryotic and eucaryotic proteins. Structure 8:585–592

    CAS  Google Scholar 

  21. Ruiz N, Kahne D, Silhavy TJ (2006) Advances in understanding bacterial outer-membrane biogenesis. Nat Rev Microbiol 4:57–66

    Google Scholar 

  22. Young K, Silver LL (1991) Leakage of periplasmic enzymes from envA1 strains of Escherichia coli. J Bacteriol 173:3609–3614

    CAS  Google Scholar 

  23. Nikaido H (2005) Restoring permeability barrier function to outer membrane. Chem Biol 12:507–509

    CAS  Google Scholar 

  24. Jia W, El Zoeiby A, Petruzziello TN, Jayabalasingham B, Seyedirashti S, Bishop RE (2004) Lipid trafficking controls endotoxin acylation in outer membranes of Escherichia coli. J Biol Chem 279:44966–44975

    CAS  Google Scholar 

  25. Dekker N (2000) Outer-membrane phospholipase A: known structure, unknown biological function. Mol Microbiol 35:711–717

    CAS  Google Scholar 

  26. Groisman EA (2001) The pleiotropic two-component regulatory system PhoP-PhoQ. J Bacteriol 183:1835–1842

    CAS  Google Scholar 

  27. Bishop RE (2008) Structural biology of membrane-intrinsic β-barrel enzymes: sentinels of the bacterial outer membrane. Biochim Biophys Acta 1778:1881–1896

    CAS  Google Scholar 

  28. Malinverni JC, Silhavy TJ (2009) An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane. Proc Natl Acad Sci USA 106:8009–8014

    CAS  Google Scholar 

  29. Casali N, Riley LW (2007) A phylogenomic analysis of the Actinomycetales mce operons. BMC Genomics 8:60–83

    Google Scholar 

  30. Alba BM, Gross CA (2004) Regulation of the Escherichia coli sigma-dependent envelope stress response. Mol Microbiol 52:613–619

    CAS  Google Scholar 

  31. Ades SE (2008) Regulation by destruction: design of the σE envelope stress response. Curr Opin Microbiol 11:535–540

    CAS  Google Scholar 

  32. Ades SE, Connolly LE, Alba BM, Gross CA (1999) The Escherichia coli σE-dependent extracytoplasmic stress response is controlled by the regulated proteolysis of an anti-σ factor. Genes Dev 13:2449–2461

    CAS  Google Scholar 

  33. Alba BM, Leeds JA, Onufryk C, Lu CZ, Gross CA (2002) DegS and YaeL participate sequentially in the cleavage of RseA to activate the σE-dependent extracytoplasmic stress response. Genes Dev 16:2156–2168

    CAS  Google Scholar 

  34. Inaba K, Suzuki M, Maegawa K, Akiyama S, Ito K, Akiyama Y (2008) A pair of circularly permutated PDZ domains control RseP, the S2P family intramembrane protease of Escherichia coli. J Biol Chem 283:35042–35052

    CAS  Google Scholar 

  35. Dartigalongue C, Missiakas D, Raina S (2001) Characterization of the Escherichia coli σE regulon. J Biol Chem 276:20866–20875

    CAS  Google Scholar 

  36. Johansen J, Eriksen M, Kallipolitis B, Valentin-Hansen P (2008) Down-regulation of outer membrane proteins by noncoding RNAs: unraveling the cAMP-CRP- and σE-dependent CyaR-ompX regulatory case. J Mol Biol 383:1–9

    CAS  Google Scholar 

  37. Sperandeo P, Cescutti R, Villa R, Di Benedetto C, Candia D, Dehò G, Polissi A (2007) Characterization of lptA and lptB, two essential genes implicated in lipopolysaccharide transport to the outer membrane of Escherichia coli. J Bacteriol 189:244–253

    CAS  Google Scholar 

  38. Braun M, Silhavy TJ (2002) Imp/OstA is required for cell envelope biogenesis in Escherichia coli. Mol Microbiol 45:1289–1302

    CAS  Google Scholar 

  39. Tam C, Missiakas D (2005) Changes in lipopolysaccharide structure induce the σE-dependent response of Escherichia coli. Mol Microbiol 55:1403–1412

    CAS  Google Scholar 

  40. Kol MA, de Kroon AI, Killian JA, de Kruijff B (2004) Transbilayer movement of phospholipids in biogenic membranes. Biochemistry 43:2673–2681

    CAS  Google Scholar 

  41. Bos MP, Robert V, Tommassen J (2007) Biogenesis of the Gram-negative bacterial outer membrane. Annu Rev Microbiol 61:191–214

    CAS  Google Scholar 

  42. Cronan JE (2003) Bacterial membrane lipids: where do we stand? Annu Rev Microbiol 57:203–224

    CAS  Google Scholar 

  43. Rothman JE, Kennedy EP (1977) Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly. Proc Natl Acad Sci USA 74:1821–1825

    CAS  Google Scholar 

  44. Kol MA, van Dalen A, de Kroon AI, de Kruijff B (2003) Translocation of phospholipids is facilitated by a subset of membrane-spanning proteins of the bacterial cytoplasmic membrane. J Biol Chem 278:24586–24593

    CAS  Google Scholar 

  45. Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR (1998) Function of Escherichia coli MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. J Biol Chem 273:12466–12475

    CAS  Google Scholar 

  46. Doerrler WT, Gibbons HS, Raetz CR (2004) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279:45102–45109

    CAS  Google Scholar 

  47. Tefsen B, Bos MP, Beckers F, Tommassen J, de Cock H (2005) MsbA is not required for phospholipid transport in Neisseria meningitidis. J Biol Chem 280:35961–35966

    CAS  Google Scholar 

  48. Driessen AJ, Nouwen N (2008) Protein translocation across the bacterial cytoplasmic membrane. Annu Rev Biochem 77:643–667

    CAS  Google Scholar 

  49. Raetz CR (1990) Biochemistry of endotoxins. Annu Rev Biochem 59:129–170

    CAS  Google Scholar 

  50. Wu T, Malinverni J, Ruiz N, Kim S, Silhavy TJ, Kahne D (2005) Identification of a multicomponent complex required for outer membrane biogenesis in Escherichia coli. Cell 121:235–245

    CAS  Google Scholar 

  51. Sampson BA, Misra R, Benson SA (1989) Identification and characterization of a new gene of Escherichia coli K-12 involved in outer membrane permeability. Genetics 122:491–501

    CAS  Google Scholar 

  52. Aono R, Negishi T, Aibe K, Inoue A, Horikoshi K (1994) Mapping of organic solvent tolerance gene ostA in Escherichia coli K-12. Biosci Biotechnol Biochem 58:1231–1235

    CAS  Google Scholar 

  53. Doerrler WT (2006) Lipid trafficking to the outer membrane of Gram-negative bacteria. Mol Microbiol 60:542–552

    CAS  Google Scholar 

  54. Bos MP, Tefsen B, Geurtsen J, Tommassen J (2004) Identification of an outer membrane protein required for the transport of lipopolysaccharide to the bacterial cell surface. Proc Natl Acad Sci USA 101:9417–9422

    CAS  Google Scholar 

  55. Wu T, McCandlish AC, Gronenberg LS, Chng SS, Silhavy TJ, Kahne D (2006) Identification of a protein complex that assembles lipopolysaccharide in the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 103:11754–11759

    CAS  Google Scholar 

  56. Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A, Dehò G, Silhavy TJ, Polissi A (2008) Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190:4460–4469

    CAS  Google Scholar 

  57. Ruiz N, Gronenberg LS, Kahne D, Silhavy TJ (2008) Identification of two inner-membrane proteins required for the transport of lipopolysaccharide to the outer membrane of Escherichia coli. Proc Natl Acad Sci USA 105:5537–5542

    CAS  Google Scholar 

  58. Chng SS, Ruiz N, Chimalakonda G, Silhavy TJ, Kahne D (2010) Characterization of the two-protein complex in Escherichia coli responsible for lipopolysaccharide assembly at the outer membrane. Proc Natl Acad Sci USA 107:5363–5368

    CAS  Google Scholar 

  59. Davidson AL, Dassa E, Orelle C, Chen J (2008) Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol Mol Biol Rev 72:317–364

    CAS  Google Scholar 

  60. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227

    CAS  Google Scholar 

  61. Karow M, Georgopoulos C (1993) The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol Microbiol 7:69–79

    CAS  Google Scholar 

  62. Clementz T, Bednarski JJ, Raetz CR (1996) Function of the htrB high temperature requirement gene of Escherchia coli in the acylation of lipid A: HtrB catalyzed incorporation of laurate. J Biol Chem 271:12095–12102

    CAS  Google Scholar 

  63. Karow M, Fayet O, Georgopoulos C (1992) The lethal phenotype caused by null mutations in the Escherichia coli htrB gene is suppressed by mutations in the accBC operon, encoding two subunits of acetyl coenzyme A carboxylase. J Bacteriol 174:7407–7418

    CAS  Google Scholar 

  64. Polissi A, Georgopoulos C (1996) Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol Microbiol 20:1221–1233

    CAS  Google Scholar 

  65. Doerrler WT, Reedy MC, Raetz CR (2001) An Escherichia coli mutant defective in lipid export. J Biol Chem 276:11461–11464

    CAS  Google Scholar 

  66. Raetz CR, Reynolds CM, Trent MS, Bishop RE (2007) Lipid A modification systems in Gram-negative bacteria. Annu Rev Biochem 76:295–329

    CAS  Google Scholar 

  67. Doerrler WT, Raetz CR (2002) ATPase activity of the MsbA lipid flippase of Escherichia coli. J Biol Chem 277:36697–36705

    CAS  Google Scholar 

  68. Eckford PD, Sharom FJ (2008) Functional characterization of Escherichia coli MsbA: interaction with nucleotides and substrates. J Biol Chem 283:12840–12850

    CAS  Google Scholar 

  69. Siarheyeva A, Sharom FJ (2009) The ABC transporter MsbA interacts with lipid A and amphipathic drugs at different sites. Biochem J 419:317–328

    CAS  Google Scholar 

  70. Eckford PD, Sharom FJ (2010) The reconstituted Escherichia coli MsbA protein displays lipid flippase activity. Biochem J 429:195–203

    CAS  Google Scholar 

  71. Ward A, Reyes CL, Yu J, Roth CB, Chang G (2007) Flexibility in the ABC transporter MsbA: alternating access with a twist. Proc Natl Acad Sci USA 104:19005–19010

    CAS  Google Scholar 

  72. Chang G, Roth CB, Reyes CL, Pornillos O, Chen YJ, Chen AP (2006) Retraction. Science 314:1875

    CAS  Google Scholar 

  73. Dawson RJ, Locher KP (2006) Structure of a bacterial multidrug ABC transporter. Nature 443:180–185

    CAS  Google Scholar 

  74. Rosenberg MF, Callaghan R, Modok S, Higgins CF, Ford RC (2005) Three-dimensional structure of P-glycoprotein: the transmembrane regions adopt an asymmetric configuration in the nucleotide-bound state. J Biol Chem 280:2857–2862

    CAS  Google Scholar 

  75. Narita S, Tokuda H (2009) Biochemical characterization of an ABC transporter LptBFGC complex required for the outer membrane sorting of lipopolysaccharides. FEBS Lett 583:2160–2164

    CAS  Google Scholar 

  76. Chng SS, Gronenberg LS, Kahne D (2010) Proteins required for lipopolysaccharide assembly in Escherichia coli form a transenvelope complex. Biochemistry 49:4565–4567

    CAS  Google Scholar 

  77. Stenberg F, Chovanec P, Maslen SL, Robinson CV, Ilag LL, von Heijne G, Daley DO (2005) Protein complexes of the Escherichia coli cell envelope. J Biol Chem 280:34409–34419

    CAS  Google Scholar 

  78. Tran AX, Trent MS, Whitfield C (2008) The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. J Biol Chem 283:20342–20349

    CAS  Google Scholar 

  79. Serina S, Nozza F, Nicastro G, Faggioni F, Mottl H, Dehò G, Polissi A (2004) Scanning the Escherichia coli chromosome by random transposon mutagenesis and multiple phenotypic screening. Res Microbiol 155:692–701

    CAS  Google Scholar 

  80. Meredith TC, Woodard RW (2003) Escherichia coli YrbH is a d-arabinose 5-phosphate isomerase. J Biol Chem 278:32771–32777

    CAS  Google Scholar 

  81. Wu J, Woodard RW (2003) Escherichia coli YrbI is 3-deoxy-d-manno-octulosonate 8-phosphate phosphatase. J Biol Chem 278:18117–18123

    CAS  Google Scholar 

  82. Sperandeo P, Pozzi C, Dehò G, Polissi A (2006) Non-essential KDO biosynthesis and new essential cell envelope biogenesis genes in the Escherichia coli yrbG-yhbG locus. Res Microbiol 157:547–558

    CAS  Google Scholar 

  83. Ma B, Reynolds CM, Raetz CR (2008) Periplasmic orientation of nascent lipid A in the inner membrane of an Escherichia coli LptA mutant. Proc Natl Acad Sci USA 105:13823–13828

    CAS  Google Scholar 

  84. Linton KJ, Higgins CF (2007) Structure and function of ABC transporters: the ATP switch provides flexible control. Pflugers Arch 453:555–567

    CAS  Google Scholar 

  85. Gil R, Silva FJ, Zientz E, Delmotte F, Gonzalez-Candelas F, Latorre A, Rausell C, Kamerbeek J, Gadau J, Holldobler B, van Ham RC, Gross R, Moya A (2003) The genome sequence of Blochmannia floridanus: comparative analysis of reduced genomes. Proc Natl Acad Sci USA 100:9388–9393

    CAS  Google Scholar 

  86. Tefsen B, Geurtsen J, Beckers F, Tommassen J, de Cock H (2005) Lipopolysaccharide transport to the bacterial outer membrane in spheroplasts. J Biol Chem 280:4504–4509

    CAS  Google Scholar 

  87. Matsuyama S, Tajima T, Tokuda H (1995) A novel periplasmic carrier protein involved in the sorting and transport of Escherichia coli lipoproteins destined for the outer membrane. EMBO J 14:3365–3372

    CAS  Google Scholar 

  88. Bayer ME (1968) Areas of adhesion between wall and membrane of Escherichia coli. J Gen Microbiol 53:395–404

    CAS  Google Scholar 

  89. Bayer ME (1991) Zones of membrane adhesion in the cryofixed envelope of Escherichia coli. J Struct Biol 107:268–280

    CAS  Google Scholar 

  90. Muhlradt PF, Menzel J, Golecki JR, Speth V (1973) Outer membrane of Salmonella. Sites of export of newly synthesised lipopolysaccharide on the bacterial surface. Eur J Biochem 35:471–481

    CAS  Google Scholar 

  91. Ishidate K, Creeger ES, Zrike J, Deb S, Glauner B, MacAlister TJ, Rothfield LI (1986) Isolation of differentiated membrane domains from Escherichia coli and Salmonella typhimurium, including a fraction containing attachment sites between the inner and outer membranes and the murein skeleton of the cell envelope. J Biol Chem 261:428–443

    CAS  Google Scholar 

  92. Hueck CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62:379–433

    CAS  Google Scholar 

  93. Nikaido H, Zgurskaya HI (2001) AcrAB and related multidrug efflux pumps of Escherichia coli. J Mol Microbiol Biotechnol 3:215–218

    CAS  Google Scholar 

  94. Suits MD, Sperandeo P, Dehò G, Polissi A, Jia Z (2008) Novel structure of the conserved Gram-negative lipopolysaccharide transport protein A and mutagenesis analysis. J Mol Biol 380:476–488

    CAS  Google Scholar 

  95. Tran AX, Dong C, Whitfield C (2010) Structure and functional analysis of LptC, a conserved membrane protein involved in the lipopolysaccharide export pathway in Escherichia coli. J Biol Chem 285:33529–33539

    CAS  Google Scholar 

  96. Rossi P, Xiao R, Acton TB, Montelione GT (2007) Solution NMR structure of uncharacterized lipoprotein B from Nitrosomonas europaea. PDB ID: 2JXP doi:10.2210/pdb2jxp/pdb

    Google Scholar 

  97. Vorobiev SM, Abashidze M, Seetharaman J, Cunningham K, Maglaqui M, Owens L, Fang Y, Xiao R, Acton TB, Montelione GT, Tong L, Hunt JF (2007) Crystal structure of the A1KSW9_NEIMF protein from Neisseria meningitidis. PDB ID: 3BF2 doi:10.2210/pdb3bf2/pdb

    Google Scholar 

  98. Meredith TC, Aggarwal P, Mamat U, Lindner B, Woodard RW (2006) Redefining the requisite lipopolysaccharide structure in Escherichia coli. ACS Chem Biol 1:33–42

    CAS  Google Scholar 

  99. Mamat U, Meredith TC, Aggarwal P, Kuhl A, Kirchhoff P, Lindner B, Hanuszkiewicz A, Sun J, Holst O, Woodard RW (2008) Single amino acid substitutions in either YhjD or MsbA confer viability to 3-deoxy-d-manno-oct-2-ulosonic acid-depleted Escherichia coli. Mol Microbiol 67:633–648

    CAS  Google Scholar 

  100. Klein G, Lindner B, Brabetz W, Brade H, Raina S (2009) Escherichia coli K-12 suppressor-free mutants lacking early glycosyltransferases and late acyltransferases: minimal lipopolysaccharide structure and induction of envelope stress response. J Biol Chem 284:15369–15389

    CAS  Google Scholar 

  101. Fischbach MA, Walsh CT (2009) Antibiotics for emerging pathogens. Science 325:1089–1093

    CAS  Google Scholar 

  102. Falagas ME, Bliziotis IA, Kasiakou SK, Samonis G, Athanassopoulou P, Michalopoulos A (2005) Outcome of infections due to pandrug-resistant (PDR) Gram-negative bacteria. BMC Infect Dis 5:24

    Google Scholar 

  103. Walsh C (2003) Where will new antibiotics come from? Nat Rev Microbiol 1:65–70

    CAS  Google Scholar 

  104. Patel U, Yan YP, Hobbs FW Jr, Kaczmarczyk J, Slee AM, Pompliano DL, Kurilla MG, Bobkova EV (2001) Oxazolidinones mechanism of action: inhibition of the first peptide bond formation. J Biol Chem 276:37199–37205

    CAS  Google Scholar 

  105. Yan K, Madden L, Choudhry AE, Voigt CS, Copeland RA, Gontarek RR (2006) Biochemical characterization of the interactions of the novel pleuromutilin derivative retapamulin with bacterial ribosomes. Antimicrob Agents Chemother 50:3875–3881

    CAS  Google Scholar 

  106. Jung D, Rozek A, Okon M, Hancock RE (2004) Structural transitions as determinants of the action of the calcium-dependent antibiotic daptomycin. Chem Biol 11:949–957

    CAS  Google Scholar 

  107. Saenz HL, Dehio C (2005) Signature-tagged mutagenesis: technical advances in a negative selection method for virulence gene identification. Curr Opin Microbiol 8:612–619

    CAS  Google Scholar 

  108. Arigoni F, Talabot F, Peitsch M, Edgerton MD, Meldrum E, Allet E, Fish R, Jamotte T, Curchod ML, Loferer H (1998) A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16:851–856

    CAS  Google Scholar 

  109. Akerley BJ, Rubin EJ, Camilli A, Lampe DJ, Robertson HM, Mekalanos JJ (1998) Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad Sci USA 95:8927–8932

    CAS  Google Scholar 

  110. Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40

    CAS  Google Scholar 

  111. Weber A, Casini A, Heine A, Kuhn D, Supuran CT, Scozzafava A, Klebe G (2004) Unexpected nanomolar inhibition of carbonic anhydrase by COX-2-selective celecoxib: new pharmacological opportunities due to related binding site recognition. J Med Chem 47:550–557

    CAS  Google Scholar 

  112. Kinnings SL, Liu N, Buchmeier N, Tonge PJ, Xie L, Bourne PE (2009) Drug discovery using chemical systems biology: repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis. PLoS Comput Biol 5:e1000423

    Google Scholar 

  113. Gronenberg LS, Kahne D (2010) Development of an activity assay for discovery of inhibitors of lipopolysaccharide transport. J Am Chem Soc 132:2518–2519

    CAS  Google Scholar 

  114. Srinivas N, Jetter P, Ueberbacher BJ, Werneburg M, Zerbe K, Steinmann J, Van der MB, Bernardini F, Lederer A, Dias RL, Misson PE, Henze H, Zumbrunn J, Gombert FO, Obrecht D, Hunziker P, Schauer S, Ziegler U, Kach A, Eberl L, Riedel K, DeMarco SJ, Robinson JA (2010) Peptidomimetic antibiotics target outer-membrane biogenesis in Pseudomonas aeruginosa. Science 327:1010–1013

    CAS  Google Scholar 

  115. Kokryakov VN, Harwig SS, Panyutich EA, Shevchenko AA, Aleshina GM, Shamova OV, Korneva HA, Lehrer RI (1993) Protegrins: leukocyte antimicrobial peptides that combine features of corticostatic defensins and tachyplesins. FEBS Lett 327:231–236

    CAS  Google Scholar 

  116. Takase I, Ishino F, Wachi M, Kamata H, Doi N, Asoh S, Matsuzawa H, Ohta T, Matsuhashi M (1987) Genes encoding two lipoproteins in the leuS-dacA region of the Escherichia coli chromosome. J Bacteriol 169:5692–5699

    CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by Regione Lombardia “Cooperazione scientifica e tecnologica internazionale” grant 16876 SAL-18 (to A.P) and “Fondazione per la Ricerca sulla Fibrosi Cistica” grant FFC#13/2010 (to A.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Polissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag/Wien

About this chapter

Cite this chapter

Sperandeo, P., Dehò, G., Polissi, A. (2011). Lipopolysaccharide Export to the Outer Membrane. In: Knirel, Y., Valvano, M. (eds) Bacterial Lipopolysaccharides. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0733-1_10

Download citation

Publish with us

Policies and ethics