Skip to main content

Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency

  • Chapter
  • First Online:
Low-Oxygen Stress in Plants

Part of the book series: Plant Cell Monographs ((CELLMONO,volume 21))

Abstract

During periods of oxygen-deficiency stress, mitochondrial respiration in plants is strongly inhibited and ATP production decreases. One potential strategy to cope with this energy crisis is the induction of enzymes that use pyrophosphate (PPi) as the energy source as an alternative to ATP-using enzymes. Four enzymatic pathways in plant primary metabolism are discussed here in the context of available gene expression and proteomic studies as well as mutant analyses. One PPi-dependent pathway, sucrose cleavage by sucrose synthase and UDP-glucose pyrophosphorylase, is clearly important for plant hypoxic metabolism, while the impact of the other three enzymes, pyrophosphate: fructose-6-phosphate phosphotransferase, pyruvate-orthophosphate dikinase, and vacuolar proton-transporting pyrophosphorylase in plants remains unclear and needs to be studied further. The latter three enzymes could be potentially involved in the flooding tolerance of species such as Rorippa sylvestris or Oryza sativa as indicated by gene expression and activity data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

H+-PPase:

vacuolar PPi-dependent proton pump

PEP:

Phosphoenolpyruvate

PEPC:

Phosphoenolpyruvate carboxylase

PEPCK:

Phosphoenolpyruvate carboxykinase

PF2K:

Phosphofructo-2-kinase

PFK:

Phosphofructokinase

PFP:

Pyrophosphate:fructose-6-phosphate phosphotransferase

PK:

Pyruvate kinase

PPDK:

Pyruvate-orthophosphate dikinase

PPi:

Inorganic pyrophosphate

SuSy:

Sucrose synthase

UGPase:

UDP-glucose pyrophosphorylase

References

  • Akman M, Bhikharie AV, McLean EH, Boonman A, Visser EJ, Schranz ME, van Tienderen PH (2012) Wait or escape? Contrasting submergence tolerance strategies of Rorippa amphibia, Rorippa sylvestris and their hybrid. Ann Bot 109:1263–1276

    CAS  PubMed  Google Scholar 

  • Alam I, Lee DG, Kim KH, Park CH, Sharmin SA, Lee H, Oh KW, Yun BW, Lee BH (2010) Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage. J Biosci 35:49–62

    CAS  PubMed  Google Scholar 

  • Albrecht G, Mustroph A (2003) Localization of sucrose synthase in wheat roots: increased in situ activity of sucrose synthase correlates with cell wall thickening by cellulose deposition under hypoxia. Planta 217:252–260

    CAS  PubMed  Google Scholar 

  • Aoyagi K, Bassham JA (1984) Pyruvate orthophosphate dikinase of C(3) seeds and leaves as compared to the enzyme from maize. Plant Physiol 75:387–392

    CAS  PubMed Central  PubMed  Google Scholar 

  • Armstrong W (1979) Aeration in higher plants. In: Woolhouse HW (ed) Advances in botanical research. Academic, London, pp 226–328

    Google Scholar 

  • Armstrong W, Armstrong J (2014) Plant internal oxygen transport (diffusion and convection) and measuring and modelling oxygen gradients. In: van Dongen JT, Licausi F (eds) Low-oxygen stress in plants. Springer, Heidelberg

    Google Scholar 

  • Bailey-Serres J, Voesenek LACJ (2008) Flooding stress: acclimations and genetic diversity. Annu Rev Plant Biol 59:313–339

    CAS  PubMed  Google Scholar 

  • Bailey-Serres J, Fukao T, Gibbs DJ, Holdsworth MJ, Lee SC, Licausi F, Perata P, Voesenek LACJ, van Dongen JT (2012) Making sense of low oxygen sensing. Trends Plant Sci 17:129–138

    CAS  PubMed  Google Scholar 

  • Baud S, Vaultier MN, Rochat C (2004) Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. J Exp Bot 55:397–409

    CAS  PubMed  Google Scholar 

  • Bielen AA, Willquist K, Engman J, van der Oost J, van Niel EW, Kengen SW (2010) Pyrophosphate as a central energy carrier in the hydrogen-producing extremely thermophilic Caldicellulosiruptor saccharolyticus. FEMS Microbiol Lett 307:48–54

    CAS  PubMed  Google Scholar 

  • Biemelt S, Hajirezaei MR, Melzer M, Albrecht G, Sonnewald U (1999) Sucrose synthase activity does not restrict glycolysis in roots of transgenic potato plants under hypoxic conditions. Planta 210:41–49

    CAS  PubMed  Google Scholar 

  • Bieniawska Z, Paul Barratt DH, Garlick AP, Thole V, Kruger NJ, Martin C, Zrenner R, Smith AM (2007) Analysis of the sucrose synthase gene family in Arabidopsis. Plant J 49:810–828

    CAS  PubMed  Google Scholar 

  • Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P (2003) A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiol 132:2058–2072

    CAS  PubMed Central  PubMed  Google Scholar 

  • Botha AM, Botha FC (1991a) Effect of anoxia on the expression and molecular form of the pyrophosphate dependent phosphofructokinase. Plant Cell Physiol 32:1299–1302

    CAS  Google Scholar 

  • Botha AM, Botha FC (1991b) Pyrophosphate dependent phosphofructokinase of Citrullus lanatus: molecular forms and expression of subunits. Plant Physiol 96:1185–1192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J (2005) Genome-wide analysis of transcript abundance and translation in Arabidopsis seedlings subjected to oxygen deprivation. Ann Bot 96:647–660

    CAS  PubMed  Google Scholar 

  • Branco-Price C, Kaiser KA, Jang CJ, Larive CK, Bailey-Serres J (2008) Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana. Plant J 56:743–755

    CAS  PubMed  Google Scholar 

  • Brown NJ, Palmer BG, Stanley S, Hajaji H, Janacek SH, Astley HM, Parsley K, Kajala K, Quick WP, Trenkamp S, Fernie AR, Maurino VG, Hibberd JM (2010) C acid decarboxylases required for C photosynthesis are active in the mid-vein of the C species Arabidopsis thaliana, and are important in sugar and amino acid metabolism. Plant J 61:122–133

    CAS  PubMed  Google Scholar 

  • Carnal NW, Black CC (1979) Pyrophosphate dependent 6-phosphofructokinase, a new glycolytic enzyme in pineapple leaves. Biochem Biophys Res Commun 86:20–26

    CAS  PubMed  Google Scholar 

  • Carystinos GD, Heather MR, Monroy AF, Rajinder DS, Poole RJ (1995) Vacuolar H+-translocating pyrophosphatase is induced by anoxia or chilling in seedlings of rice. Plant Physiol 108:641–649

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chastain CJ, Failing CJ, Manandhar L, Zimmerman MA, Lakner MM, Nguyen TH (2011) Functional evolution of C(4) pyruvate, orthophosphate dikinase. J Exp Bot 62:3083–3091

    CAS  PubMed  Google Scholar 

  • Chourey PS, Taliercio EW, Kane EJ (1991) Tissue-specific expression and anaerobically induced posttranscriptional modulation of sucrose synthase genes in Sorghum bicolor M. Plant Physiol 96:485–490

    CAS  PubMed Central  PubMed  Google Scholar 

  • Christianson JA, Llewellyn DJ, Dennis ES, Wilson IW (2010) Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol 51:21–37

    CAS  PubMed  Google Scholar 

  • Costa dos Santos A, da Silva WS, de Meis L, Galina A (2003) Proton transport in maize tonoplasts supported by fructose-1,6-bisphosphate cleavage. Pyrophosphate-dependent phosphofructokinase as a pyrophosphate-regenerating system. Plant Physiol 133:885–892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dancer JE, ap Rees T (1989) Effects of 2,4-dinitrophenol and anoxia on the inorganic pyrophosphate content of the spadix of Arum maculatum and the root apices of Pisum sativum. Planta 178:421–424

    CAS  PubMed  Google Scholar 

  • Déjardin A, Sokolov LN, Kleczkowski LA (1999) Sugar/osmoticum levels modulate differential abscisic acid-independent expression of two stress-responsive sucrose synthase genes in Arabidopsis. Biochem J 344(Pt 2):503–509

    PubMed  Google Scholar 

  • Edwards JM, Roberts TH, Atwell BJ (2012) Quantifying ATP turnover in anoxic coleoptiles of rice (Oryza sativa) demonstrates preferential allocation of energy to protein synthesis. J Exp Bot 63(12):4389–402

    CAS  PubMed  Google Scholar 

  • Enomoto T, Ohyama H, Inui H, Miyatake K, Nakano Y, Kitaoka S (1990) Roles of pyrophosphate:D-fructose 6-phosphate 1-phosphotransferase in the regulation of glycolysis during acclimation of aerobic Euglena gracilis to anaerobiosis. Plant Sci 67:161–167

    CAS  Google Scholar 

  • Feng XM, Cao LJ, Adam RD, Zhang XC, Lu SQ (2008) The catalyzing role of PPDK in Giardia lamblia. Biochem Biophys Res Commun 367:394–398

    CAS  PubMed  Google Scholar 

  • Ferjani A, Segami S, Horiguchi G, Sakata A, Maeshima M, Tsukaya H (2012) Regulation of pyrophosphate levels by H+-PPase is central for proper resumption of early plant development. Plant Signal Behav 7:38–42

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fukao T, Xu K, Ronald PC, Bailey-Serres J (2006) A variable cluster of ethylene response factor-like genes regulates metabolic and developmental acclimation responses to submergence in rice. Plant Cell 18:2021–2034

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gaxiola RA, Sanchez CA, Paez-Valencia J, Ayre BG, Elser JJ (2012) Genetic manipulation of a “vacuolar” H+-PPase: from salt tolerance to yield enhancement under phosphorus-deficient soils. Plant Physiol 159:3–11

    CAS  PubMed Central  PubMed  Google Scholar 

  • Geigenberger P, Fernie AR, Gibon Y, Christ M, Stitt M (2000) Metabolic activity decreases as an adaptive response to low internal oxygen in growing potato tubers. Biol Chem 381:723–740

    CAS  PubMed  Google Scholar 

  • Gibon Y, Vigeolas H, Tiessen A, Geigenberger P, Stitt M (2002) Sensitive and high throughput metabolite assays for inorganic pyrophosphate, ADPGlc, nucleotide phosphates, and glycolytic intermediates based on a novel enzymic cycling system. Plant J 30:221–235

    CAS  PubMed  Google Scholar 

  • Gout E, Boisson A, Aubert S, Douce R, Bligny R (2001) Origin of the cytoplasmic pH changes during anaerobic stress in higher plant cells. Carbon-13 and phosphorous-31 nuclear magnetic resonance studies. Plant Physiol 125:912–925

    CAS  PubMed Central  PubMed  Google Scholar 

  • Groenewald JH, Botha FC (2008) Down-regulation of pyrophosphate: fructose 6-phosphate 1-phosphotransferase (PFP) activity in sugarcane enhances sucrose accumulation in immature internodes. Transgenic Res 17:85–92

    CAS  PubMed  Google Scholar 

  • Guglielminetti L, Perata P, Alpi A (1995) Effect of anoxia on carbohydrate metabolism in rice seedlings. Plant Physiol 108:735–741

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guglielminetti L, Alpi A, Perata P (1996) Shrunken-1-encoded sucrose synthase is not required for the sucrose-ethanol transition in maize under anaerobic conditions. Plant Sci 119:1–10

    CAS  Google Scholar 

  • Hajirezaei MR, Sonnewald U, Viola R, Carlise S, Dennis D, Stitt M (1994) Transgenic potato plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate phosphotransferase show no visible phenotype and only minor changes in metabolic fluxes in their tubers. Planta 192:16–33

    CAS  Google Scholar 

  • Harada T, Satoh S, Yoshioka T, Ishizawa K (2005) Expression of sucrose synthase genes involved in enhanced elongation of pondweed (Potamogeton distinctus) turions under anoxia. Ann Bot 96:683–692

    CAS  PubMed  Google Scholar 

  • Hsu FC, Chou MY, Peng HP, Chou SJ, Shih MC (2011) Insights into hypoxic systemic responses based on analyses of transcriptional regulation in Arabidopsis. PLoS One 6:e28888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Huang S, Colmer TD, Millar AH (2008) Does anoxia tolerance involve altering the energy currency towards PPi? Trends Plant Sci 13:221–227

    CAS  PubMed  Google Scholar 

  • Imaizumi N, Ku MS, Ishihara K, Samejima M, Kaneko S, Matsuoka M (1997) Characterization of the gene for pyruvate, orthophosphate dikinase from rice, a C3 plant, and a comparison of structure and expression between C3 and C4 genes for this protein. Plant Mol Biol 34:701–716

    CAS  PubMed  Google Scholar 

  • Kang HG, Park S, Matsuoka M, An G (2005) White-core endosperm floury endosperm-4 in rice is generated by knockout mutations in the C-type pyruvate orthophosphate dikinase gene (OsPPDKB). Plant J 42:901–911

    CAS  PubMed  Google Scholar 

  • Kato-Noguchi H (2002a) The catalytic direction of pyrophosphate:fructose 6-phosphate 1-phosphotransferase in rice coleoptiles in anoxia. Physiol Plant 116:345–350

    CAS  Google Scholar 

  • Kato-Noguchi H (2002b) Hypoxic acclimation to anoxia in Avena roots. Plant Growth Regul 38:1–5

    CAS  Google Scholar 

  • Kato-Noguchi H, Watada AE (1996) Low-oxygen atmosphere increases fructose-2,6-bisphosphatase in fresh-cut carrots. J Am Soc Hortic Sci 121:307–309

    CAS  Google Scholar 

  • Kleczkowski LA, Geisler M, Ciereszko I, Johansson H (2004) UDP-Glucose pyrophosphorylase. An old protein with new tricks. Plant Physiol 134:912–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kolman MA, Torres LL, Martin ML, Salerno GL (2012) Sucrose synthase in unicellular cyanobacteria and its relationship with salt and hypoxic stress. Planta 235:955–964

    CAS  PubMed  Google Scholar 

  • Komatsu S, Sugimoto T, Hoshino T, Nanjo Y, Furukawa K (2010) Identification of flooding stress responsible cascades in root and hypocotyl of soybean using proteome analysis. Amino Acids 38:729–738

    CAS  PubMed  Google Scholar 

  • Kreuzwieser J, Hauberg J, Howell KA, Carroll A, Rennenberg H, Millar AH, Whelan J (2009) Differential response of gray poplar leaves and roots underpins stress adaptation during hypoxia. Plant Physiol 149:461–473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kruger NJ, Kombrink E, Beevers H (1983) Pyrophosphate:fructose-6-phosphate phosphotransferase in germinating castor bean seedlings. FEBS Lett 153:409–412

    CAS  Google Scholar 

  • Kulichikhin KY, Aitio O, Chirkova TV, Fagerstedt KV (2007) Effect of oxygen concentration on intracellular pH, glucose-6-phosphate and NTP content in rice (Oryza sativa) and wheat (Triticum aestivum) root tips: in vivo 31P-NMR study. Physiol Plant 129:507–518

    CAS  Google Scholar 

  • Kulichikhin KY, Chirkova TV, Fagerstedt KV (2009) Activity of biochemical pH-stat enzymes in cereal root tips under oxygen deficiency. Russ J Plant Physiol 56:377–388

    CAS  Google Scholar 

  • Lasanthi-Kudahettige R, Magneschi L, Loreti E, Gonzali S, Licausi F, Novi G, Beretta O, Vitulli F, Alpi A, Perata P (2007) Transcript profiling of the anoxic rice coleoptile. Plant Physiol 144:218–231

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lee SC, Mustroph A, Sasidharan R, Vashisht D, Pedersen O, Oosumi T, Voesenek LACJ, Bailey-Serres J (2011) Molecular characterization of the submergence response of the Arabidopsis thaliana ecotype Columbia. New Phytol 190:457–471

    CAS  PubMed  Google Scholar 

  • Leegood RC, Walker RP (2003) Regulation and roles of phosphoenolpyruvate carboxykinase in plants. Arch Biochem Biophys 414:204–210

    CAS  PubMed  Google Scholar 

  • Lim H, Cho MH, Jeon JS, Bhoo SH, Kwon YK, Hahn TR (2009) Altered expression of pyrophosphate: fructose-6-phosphate 1-phosphotransferase affects the growth of transgenic Arabidopsis plants. Mol Cell 27:641–649

    CAS  Google Scholar 

  • Liu Q, Zhang Q, Burton RA, Shirley NJ, Atwell BJ (2010) Expression of vacuolar H+-pyrophosphatase (OVP3) is under control of an anoxia-inducible promoter in rice. Plant Mol Biol 72:47–60

    CAS  PubMed  Google Scholar 

  • Loreti E, Poggi A, Novi G, Alpi A, Perata P (2005) A genome-wide analysis of the effects of sucrose on gene expression in Arabidopsis seedlings under anoxia. Plant Physiol 137:1130–1138

    CAS  PubMed Central  PubMed  Google Scholar 

  • McElfresh KC, Chourey PS (1988) Anaerobiosis induces transcription but not translation of sucrose synthase in maize. Plant Physiol 87:542–546

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mertens E (1991) Pyrophosphate-dependent phosphofructokinase, an anaerobic glycolytic enzyme? FEBS Lett 285:1–5

    CAS  PubMed  Google Scholar 

  • Mertens E (1993) ATP versus pyrophosphate: glycolysis revisited in parasitic protists. Parasitol Today 9:122–126

    CAS  PubMed  Google Scholar 

  • Mertens E, Laroundelle Y, Hers H-G (1990) Induction of pyrophosphate:fructose 6-phosphate 1-phosphotransferase by anoxia in rice seedlings. Plant Physiol 93:584–587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meyer AO, Kelly GJ, Latzko E (1978) Pyruvate ortho-phosphate dikinase of immature wheat grains. Plant Sci Lett 12:35–40

    CAS  Google Scholar 

  • Mohanty B, Wilson PM, ap Rees T (1993) Effects of anoxia on growth and carbohydrate metabolism in suspension cultures of soybean and rice. Phytochemistry 34:75–82

    CAS  Google Scholar 

  • Moons A, Valcke R, Van Montagu M (1998) Low-oxygen stress and water deficit induce cytosolic pyruvate orthophosphate dikinase (PPDK) expression in roots of rice, a C3 plant. Plant J 15:89–98

    CAS  PubMed  Google Scholar 

  • Mustroph A, Albrecht G (2003) Tolerance of crop plants to oxygen deficiency stress: fermentative activity and photosynthetic capacity of entire seedlings under hypoxia and anoxia. Physiol Plant 117:508–520

    CAS  PubMed  Google Scholar 

  • Mustroph A, Albrecht G, Hajirezaei MR, Grimm B, Biemelt S (2005) Low levels of pyrophosphate in transgenic potato plants expressing E. coli pyrophosphatase lead to decreased vitality under oxygen deficiency. Ann Bot 96:717–726

    CAS  PubMed  Google Scholar 

  • Mustroph A, Sonnewald U, Biemelt S (2007) Characterisation of the ATP-dependent phosphofructokinase gene family from Arabidopsis thaliana. FEBS Lett 581:2401–2410

    CAS  PubMed  Google Scholar 

  • Mustroph A, Zanetti ME, Jang CJ, Holtan HE, Repetti PP, Galbraith DW, Girke T, Bailey-Serres J (2009) Profiling translatomes of discrete cell populations resolves altered cellular priorities during hypoxia in Arabidopsis. Proc Natl Acad Sci U S A 106:18843–18848

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mustroph A, Lee SC, Oosumi T, Zanetti ME, Yang H, Ma K, Yaghoubi-Masihi A, Fukao T, Bailey-Serres J (2010) Cross-kingdom comparison of transcriptomic adjustments to low-oxygen stress highlights conserved and plant-specific responses. Plant Physiol 152:1484–1500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mustroph A, Stock J, Hess N, Aldous S, Dreilich A, Grimm B (2013) Characterization of the phosphofructokinase gene family in rice and its expression under oxygen deficiency stress. Front Plant Sci 4:125

    PubMed Central  PubMed  Google Scholar 

  • Nanjo Y, Skultety L, Ashraf Y, Komatsu S (2010) Comparative proteomic analysis of early-stage soybean seedlings responses to flooding by using gel and gel-free techniques. J Proteome Res 9:3989–4002

    CAS  PubMed  Google Scholar 

  • Nanjo Y, Maruyama K, Yasue H, Yamaguchi-Shinozaki K, Shinozaki K, Komatsu S (2011) Transcriptional responses to flooding stress in roots including hypocotyl of soybean seedlings. Plant Mol Biol 77:129–144

    CAS  PubMed  Google Scholar 

  • Narsai R, Howell KA, Carroll A, Ivanova A, Millar AH, Whelan J (2009) Defining core metabolic and transcriptomic responses to oxygen availability in rice embryos and young seedlings. Plant Physiol 151:306–322

    CAS  PubMed Central  PubMed  Google Scholar 

  • Narsai R, Rocha M, Geigenberger P, Whelan J, van Dongen JT (2011) Comparative analysis between plant species of transcriptional and metabolic responses to hypoxia. New Phytol 190:472–487

    CAS  PubMed  Google Scholar 

  • Nielsen TH, Stitt M (2001) Tobacco transformants with strongly decreased expression of pyrophosphate:fructose-6-phosphate expression in the base of their young growing leaves contain much higher levels of fructose-2,6-bisphosphate but no major changes in fluxes. Planta 214:106–116

    CAS  PubMed  Google Scholar 

  • Nielsen TH, Rung JH, Villadsen D (2004) Fructose-2,6-bisphosphate: a traffic signal in plant metabolism. Trends Plant Sci 9:556–563

    CAS  PubMed  Google Scholar 

  • O’Brien WE, Bowien S, Wood HG (1975) Isolation and characterization of a pyrophosphate-dependent phosphofructokinase from Propionibacterium shermanii. J Biol Chem 250:8690–8695

    PubMed  Google Scholar 

  • Okazaki Y, Shimojima M, Sawada Y, Toyooka K, Narisawa T, Mochida K, Tanaka H, Matsuda F, Hirai A, Hirai MY, Ohta H, Saito K (2009) A chloroplastic UDP-glucose pyrophosphorylase from Arabidopsis is the committed enzyme for the first step of sulfolipid biosynthesis. Plant Cell 21:892–909

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ouyang S, Zhu W, Hamilton J et al (2007) The TIGR rice genome annotation resource: improvements and new features. Nucleic Acids Res 35:D883–D887

    CAS  PubMed Central  PubMed  Google Scholar 

  • Park JI, Ishimizu T, Suwabe K, Sudo K, Masuko H, Hakozaki H, Nou IS, Suzuki G, Watanabe M (2010) UDP-glucose pyrophosphorylase is rate limiting in vegetative and reproductive phases in Arabidopsis thaliana. Plant Cell Physiol 51:981–996

    CAS  PubMed  Google Scholar 

  • Parsley K, Hibberd JM (2006) The Arabidopsis PPDK gene is transcribed from two promoters to produce differentially expressed transcripts responsible for cytosolic and plastidic proteins. Plant Mol Biol 62:339–349

    CAS  PubMed  Google Scholar 

  • Paul M, Sonnewald U, Hajirezaei M, Dennis D, Stitt M (1995) Transgenic tobacco plants with strongly decreased expression of pyrophosphate:fructose-6-phosphate 1-phosphotranferase do not differ significantly from wild type in photosynthate partitioning, plant growth or their ability to cope with limiting phosphate, limiting nitrogen and suboptimal temperatures. Planta 196:277–283

    CAS  Google Scholar 

  • Penfield S, Clements S, Bailey KJ, Gilday AD, Leegood RC, Gray JE, Graham IA (2012) Expression and manipulation of phosphoenolpyruvate carboxykinase 1 identifies a role for malate metabolism in stomatal closure. Plant J 69:679–688

    CAS  PubMed  Google Scholar 

  • Plaxton WC (1996) The organization and regulation of plant glycolysis. Annu Rev Plant Physiol Plant Mol Biol 48:185–214

    Google Scholar 

  • Rajhi I, Yamauchi T, Takahashi H, Nishiuchi S, Shiono K, Watanabe R, Mliki A, Nagamura Y, Tsutsumi N, Nishizawa NK, Nakazono M (2011) Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses. New Phytol 190:351–368

    CAS  PubMed  Google Scholar 

  • Ricard B, Rivoal J, Spiteri A, Pradet A (1991) Anaerobic stress induces the transcription of sucrose synthase in rice. Plant Physiol 95:669–674

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ricard B, Van Toai T, Chourey P, Saglio P (1998) Evidence for the critical role of sucrose synthase for anoxic tolerance of maize roots using a double mutant. Plant Physiol 116:1323–1331

    CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts JKM, Callis J, Jardetzky O, Walbot V, Freeling M (1984) Cytoplasmic acidosis as a determinant of flooding intolerance in plants. Proc Natl Acad Sci U S A 81:6029–6033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rocha Facanha A, de Meis L (1998) Reversibility of H+-ATPase and H+-pyrophosphatase in tonoplast vesicles from maize coleoptiles and seeds. Plant Physiol 116:1487–1495

    PubMed Central  PubMed  Google Scholar 

  • Sasidharan R, Mustroph A, Boonman A, Akman M, Ammerlaan AM, Breit T, Schranz ME, Voesenek LA, van Tienderen P (2013) Root transcript profiling of two Rorippa (Brassicaceae) species reveals gene clusters associated with extreme submergence tolerance. Plant Physiol 163:1277–1292

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Serrano A, Pérez-Castiñeira JR, Baltscheffsky M, Baltscheffsky H (2007) H+-PPases: yesterday, today and tomorrow. IUBMB Life 59:76–83

    CAS  PubMed  Google Scholar 

  • Slamovits CH, Keeling PJ (2006) Pyruvate-phosphate dikinase of oxymonads and parabasalia and the evolution of pyrophosphate-dependent glycolysis in anaerobic eukaryotes. Eukaryot Cell 5:148–154

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sorenson R, Bailey-Serres J (2014) Selective mRNA translation tailors low oxygen energetics. In: van Dongen JT, Licausi F (eds) Low-oxygen stress in plants. Springer, Heidelberg

    Google Scholar 

  • Springer B, Werr W, Starlinger P, Bennet DC, Zokolica M, Freeling M (1986) The shrunken gene on chromosome 9 of Zea mays L. is expressed in various plant tissues and encodes an anaerobic protein. Mol Gen Genet 205:461–468

    CAS  PubMed  Google Scholar 

  • Stitt M (1990) Fructose-2,6-bisphosphate as a regulatory molecule in plants. Annu Rev Plant Physiol Plant Mol Biol 41:153–185

    CAS  Google Scholar 

  • Stitt M (1998) Pyrophosphate as an energy donor in the cytosol of plant cells: an enigmatic alternative to ATP. Bot Acta 111:167–175

    CAS  Google Scholar 

  • Taylor L, Nunes-Nesi A, Parsley K, Leiss A, Leach G, Coates S, Wingler A, Fernie AR, Hibberd JM (2010) Cytosolic pyruvate, orthophosphate dikinase functions in nitrogen remobilization during leaf senescence and limits individual seed growth and nitrogen content. Plant J 62:641–652

    CAS  PubMed  Google Scholar 

  • Teramoto M, Koshiishi C, Ashihara H (2000) Wound-induced respiration and pyrophosphate:fructose-6-phosphate phosphotransferase in potato tubers. Z Naturforsch 55:953–956

    CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    CAS  PubMed  Google Scholar 

  • van der Merwe MJ, Groenewald JH, Stitt M, Kossmann J, Botha FC (2010) Downregulation of pyrophosphate: D-fructose-6-phosphate 1-phosphotransferase activity in sugarcane culms enhances sucrose accumulation due to elevated hexose-phosphate levels. Planta 231:595–608

    PubMed Central  PubMed  Google Scholar 

  • van Dongen JT, Frohlich A, Ramirez-Aguilar SJ, Schauer N, Fernie AR, Erban A, Kopka J, Clark J, Langer A, Geigenberger P (2009) Transcript and metabolite profiling of the adaptive response to mild decreases in oxygen concentration in the roots of Arabidopsis plants. Ann Bot 103:269–280

    PubMed  Google Scholar 

  • van Veen H, Mustroph A, Barding GA, Vergeer-van Eijk M, Welschen-Evertman RA, Pedersen O, Visser EJ, Larive CK, Pierik R, Bailey-Serres J, Voesenek LA, Sasidharan R (2013) Two Rumex species from contrasting hydrological niches regulate flooding tolerance through distinct mechanisms. Plant Cell [Epub ahead of print]. doi: http://dx.doi.org/10.1105/tpc.113.119016

  • Vashisht D, Hesselink A, Pierik R, Ammerlaan JM, Bailey-Serres J, Visser EJ, Pedersen O, van Zanten M, Vreugdenhil D, Jamar DC, Voesenek LACJ, Sasidharan R (2011) Natural variation of submergence tolerance among Arabidopsis thaliana accessions. New Phytol 190:299–310

    CAS  PubMed  Google Scholar 

  • Weiner H, Stitt M, Heldt HW (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim Biophys Acta 893:13–21

    CAS  Google Scholar 

  • Winkler C, Delvos B, Martin W, Henze K (2007) Purification, microsequencing and cloning of spinach ATP-dependent phosphofructokinase link sequence and function for the plant enzyme. FEBS J 274:429–438

    CAS  PubMed  Google Scholar 

  • Wong JH, Kiss F, Wu M-X, Buchanan BB (1990) Pyrophosphate fructose-6-P 1-phosphotransferase from tomato fruit. Evidence for change during ripening. Plant Physiol 94:499–506

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu K, Xu X, Fukao T, Canlas P, Maghirang-Rodriguez R, Heuer S, Ismail AM, Bailey-Serres J, Ronald PC, Mackill DJ (2006) Sub1A is an ethylene-response-factor-like gene that confers submergence tolerance to rice. Nature 442:705–708

    CAS  PubMed  Google Scholar 

  • Zabalza A, van Dongen JT, Froehlich A, Oliver SN, Faix B, Gupta KJ, Schmälzlin E, Igal M, Orcaray L, Royuela M, Geigenberger P (2009) Regulation of respiration and fermentation to control the plant internal oxygen concentration. Plant Physiol 149:1087–1098

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Alex Boonman (Monsanto Vegetable Seeds Division, Bergschenhoek, The Netherlands) for providing data on Rorippa species, and Maria Bongartz, Willi Riber, and Philipp Gasch (University Bayreuth, Germany) for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Mustroph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Wien

About this chapter

Cite this chapter

Mustroph, A., Hess, N., Sasidharan, R. (2014). Hypoxic Energy Metabolism and PPi as an Alternative Energy Currency. In: van Dongen, J., Licausi, F. (eds) Low-Oxygen Stress in Plants. Plant Cell Monographs, vol 21. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1254-0_9

Download citation

Publish with us

Policies and ethics